parent
639e7ca47e
commit
fba2bfeb54
@ -0,0 +1,134 @@
|
|||||||
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore as ms
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore.common.api import _executor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
||||||
|
from mindspore import context, Tensor, Parameter
|
||||||
|
from mindspore.parallel import set_algo_parameters
|
||||||
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||||
|
|
||||||
|
grad_all = C.GradOperation(get_all=True)
|
||||||
|
|
||||||
|
class NetWithLoss(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(NetWithLoss, self).__init__()
|
||||||
|
self.loss = VirtualLoss()
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
predict = self.network(x)
|
||||||
|
return self.loss(predict)
|
||||||
|
|
||||||
|
class GradWarp(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(GradWarp, self).__init__()
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return grad_all(self.network)(x)
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, strategy_dict=None):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.mul1 = P.Mul()
|
||||||
|
self.mul2 = P.Mul()
|
||||||
|
self.mul3 = P.Mul()
|
||||||
|
self.mul4 = P.Mul()
|
||||||
|
self.relu1 = P.ReLU()
|
||||||
|
self.relu2 = P.ReLU()
|
||||||
|
self.ba1 = P.BiasAdd()
|
||||||
|
self.add = P.TensorAdd()
|
||||||
|
self.weight = Parameter(Tensor(np.ones([128, 1000]), dtype=ms.float32), name="weight")
|
||||||
|
self.bias = Parameter(Tensor(np.ones([1000]), dtype=ms.float32), name="bias")
|
||||||
|
|
||||||
|
if strategy_dict is not None:
|
||||||
|
self.mul1.shard(strategy_dict["mul1"])
|
||||||
|
self.mul2.shard(strategy_dict["mul2"])
|
||||||
|
self.relu1.shard(strategy_dict["relu1"])
|
||||||
|
self.relu2.shard(strategy_dict["relu2"])
|
||||||
|
self.ba1.shard(strategy_dict["bias_add"])
|
||||||
|
self.add.shard(strategy_dict["add"])
|
||||||
|
|
||||||
|
def construct(self, inputs):
|
||||||
|
x = self.mul1(inputs, self.weight)
|
||||||
|
y = self.relu1(x)
|
||||||
|
y = self.mul2(y, self.weight)
|
||||||
|
z = self.mul3(x, self.weight)
|
||||||
|
z = self.ba1(z, self.bias)
|
||||||
|
x = self.add(y, z)
|
||||||
|
x = self.mul4(x, self.weight)
|
||||||
|
x = self.relu2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def test_star_strategy_consistency1():
|
||||||
|
size = 8
|
||||||
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||||
|
set_algo_parameters(fully_use_devices=False)
|
||||||
|
x = Tensor(np.ones([128, 1000]), dtype=ms.float32)
|
||||||
|
strategy_dict = {"mul1": ((2, 4), (2, 4)), "mul2": None, "relu1": ((4, 1),), "bias_add": ((8, 1), (1,)),
|
||||||
|
"relu2": ((2, 2),), "add": ((1, 8), (1, 8))}
|
||||||
|
net = NetWithLoss(Net(strategy_dict))
|
||||||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||||
|
net.set_auto_parallel()
|
||||||
|
reset_op_id()
|
||||||
|
_executor.compile(net, x, phase='train')
|
||||||
|
|
||||||
|
|
||||||
|
def test_star_strategy_consistency2():
|
||||||
|
size = 8
|
||||||
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||||
|
set_algo_parameters(fully_use_devices=False)
|
||||||
|
x = Tensor(np.ones([128, 1000]), dtype=ms.float32)
|
||||||
|
strategy_dict = {"mul1": None, "mul2": ((1, 4), (1, 4)), "relu1": ((2, 1),), "bias_add": ((4, 2), (2,)),
|
||||||
|
"relu2": ((2, 2),), "add": ((8, 1), (8, 1))}
|
||||||
|
net = NetWithLoss(Net(strategy_dict))
|
||||||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||||
|
net.set_auto_parallel()
|
||||||
|
reset_op_id()
|
||||||
|
_executor.compile(net, x, phase='train')
|
||||||
|
|
||||||
|
|
||||||
|
def test_star_strategy_consistency3():
|
||||||
|
size = 8
|
||||||
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||||
|
set_algo_parameters(fully_use_devices=False)
|
||||||
|
x = Tensor(np.ones([128, 1000]), dtype=ms.float32)
|
||||||
|
strategy_dict = {"mul1": None, "mul2": None, "relu1": ((8, 1),), "bias_add": ((1, 4), (4,)),
|
||||||
|
"relu2": ((4, 1),), "add": ((2, 2), (2, 2))}
|
||||||
|
net = NetWithLoss(Net(strategy_dict))
|
||||||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||||
|
net.set_auto_parallel()
|
||||||
|
reset_op_id()
|
||||||
|
_executor.compile(net, x, phase='train')
|
||||||
|
|
||||||
|
|
||||||
|
def test_star_strategy_consistency4():
|
||||||
|
size = 8
|
||||||
|
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||||
|
set_algo_parameters(fully_use_devices=False)
|
||||||
|
x = Tensor(np.ones([128, 1000]), dtype=ms.float32)
|
||||||
|
strategy_dict = {"mul1": ((1, 8), (1, 8)), "mul2": ((1, 4), (1, 4)), "relu1": None, "bias_add": None,
|
||||||
|
"relu2": None, "add": None}
|
||||||
|
net = NetWithLoss(Net(strategy_dict))
|
||||||
|
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||||
|
net.set_auto_parallel()
|
||||||
|
reset_op_id()
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
_executor.compile(net, x, phase='train')
|
Loading…
Reference in new issue