|
|
@ -7,9 +7,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
- Android Studio >= 3.2 (推荐4.0以上版本)
|
|
|
|
- Android Studio >= 3.2 (推荐4.0以上版本)
|
|
|
|
- NDK 21.3
|
|
|
|
- NDK 21.3
|
|
|
|
- CMake 3.10
|
|
|
|
- CMake 3.10.2 [CMake](https://cmake.org/download)
|
|
|
|
- Android SDK >= 26
|
|
|
|
- Android SDK >= 26
|
|
|
|
- OpenCV >= 4.0.0
|
|
|
|
- JDK >= 1.8 [JDK]( https://www.oracle.com/downloads/otn-pub/java/JDK/)
|
|
|
|
|
|
|
|
|
|
|
|
### 构建与运行
|
|
|
|
### 构建与运行
|
|
|
|
|
|
|
|
|
|
|
@ -29,12 +29,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
通过USB连接Android设备调试,点击`Run 'app'`即可在您的设备上运行本示例项目。
|
|
|
|
通过USB连接Android设备调试,点击`Run 'app'`即可在您的设备上运行本示例项目。
|
|
|
|
|
|
|
|
|
|
|
|
* 注:编译过程中Android Studio会自动下载MindSpore Lite、OpenCV、模型文件等相关依赖项,编译过程需做耐心等待。
|
|
|
|
* 注:编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
|
|
|
|
|
|
|
|
|
|
|
|
![run_app](images/run_app.PNG)
|
|
|
|
![run_app](images/run_app.PNG)
|
|
|
|
|
|
|
|
|
|
|
|
Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
|
|
|
|
Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
手机需开启“USB调试模式”,Android Studio 才能识别到手机。 华为手机一般在设置->系统和更新->开发人员选项->USB调试中开始“USB调试模型”。
|
|
|
|
|
|
|
|
|
|
|
|
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
|
|
|
|
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
|
|
|
|
|
|
|
|
|
|
|
|
![install](images/install.jpg)
|
|
|
|
![install](images/install.jpg)
|
|
|
@ -54,29 +56,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
app
|
|
|
|
app
|
|
|
|
|
|
|
|
|
|
|
|
|
├── libs # 存放demo jni层依赖的库文件
|
|
|
|
|
|
|
|
│ └── arm64-v8a
|
|
|
|
|
|
|
|
│ ├── libopencv_java4.so # opencv
|
|
|
|
|
|
|
|
│ ├── libmlkit-label-MS.so # ndk编译生成的库文件
|
|
|
|
|
|
|
|
│ └── libmindspore-lite.so # mindspore lite
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
├── src/main
|
|
|
|
├── src/main
|
|
|
|
│ ├── assets # 资源文件
|
|
|
|
│ ├── assets # 资源文件
|
|
|
|
| | └── mobilenetv2.ms # 存放模型文件
|
|
|
|
| | └── mobilenetv2.ms # 存放模型文件
|
|
|
|
│ |
|
|
|
|
│ |
|
|
|
|
│ ├── cpp # 模型加载和预测主要逻辑封装类
|
|
|
|
│ ├── cpp # 模型加载和预测主要逻辑封装类
|
|
|
|
| | ├── include # 存放MindSpore调用相关的头文件
|
|
|
|
| | ├── ..
|
|
|
|
| | | └── ...
|
|
|
|
| | ├── mindspore_lite_x.x.x-minddata-arm64-cpu #MindSpore Lite版本
|
|
|
|
│ | |
|
|
|
|
|
|
|
|
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
|
|
|
|
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
|
|
|
|
│ | └── MindSporeNetnative.h # 头文件
|
|
|
|
│ | └── MindSporeNetnative.h # 头文件
|
|
|
|
|
|
|
|
| | └── MsNetWork.cpp # MindSpre接口封装
|
|
|
|
│ |
|
|
|
|
│ |
|
|
|
|
│ ├── java # java层应用代码
|
|
|
|
│ ├── java # java层应用代码
|
|
|
|
│ │ └── com.huawei.himindsporedemo
|
|
|
|
│ │ └── com.huawei.himindsporedemo
|
|
|
|
│ │ ├── gallery.classify # 图像处理及MindSpore JNI调用相关实现
|
|
|
|
│ │ ├── gallery.classify # 图像处理及MindSpore JNI调用相关实现
|
|
|
|
│ │ │ └── ...
|
|
|
|
│ │ │ └── ...
|
|
|
|
│ │ └── obejctdetect # 开启摄像头及绘制相关实现
|
|
|
|
│ │ └── widget # 开启摄像头及绘制相关实现
|
|
|
|
│ │ └── ...
|
|
|
|
│ │ └── ...
|
|
|
|
│ │
|
|
|
|
│ │
|
|
|
|
│ ├── res # 存放Android相关的资源文件
|
|
|
|
│ ├── res # 存放Android相关的资源文件
|
|
|
@ -85,7 +80,7 @@ app
|
|
|
|
├── CMakeList.txt # cmake编译入口文件
|
|
|
|
├── CMakeList.txt # cmake编译入口文件
|
|
|
|
│
|
|
|
|
│
|
|
|
|
├── build.gradle # 其他Android配置文件
|
|
|
|
├── build.gradle # 其他Android配置文件
|
|
|
|
├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
|
|
|
|
├── download.gradle # 工程依赖文件下载
|
|
|
|
└── ...
|
|
|
|
└── ...
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
@ -93,20 +88,11 @@ app
|
|
|
|
|
|
|
|
|
|
|
|
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite源码编译生成`libmindspore-lite.so`库文件。
|
|
|
|
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite源码编译生成`libmindspore-lite.so`库文件。
|
|
|
|
|
|
|
|
|
|
|
|
在Android Studio中将编译完成的`libmindspore-lite.so`库文件(可包含多个兼容架构),分别放置在APP工程的`app/libs/arm64-v8a`(ARM64)或`app/libs/armeabi-v7a`(ARM32)目录下,并在应用的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`和`armeabi-v7a`的编译支持。
|
|
|
|
本示例中,build过程由download.gradle文件自动从华为服务器下载MindSpore Lite 版本文件,并放置在`app / src / main/cpp/mindspore_lite_x.x.x-minddata-arm64-cpu`目录下。
|
|
|
|
|
|
|
|
|
|
|
|
本示例中,build过程由download.gradle文件自动从华为服务器下载libmindspore-lite.so以及OpenCV的libopencv_java4.so库文件,并放置在`app/libs/arm64-v8a`目录下。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置:
|
|
|
|
* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置:
|
|
|
|
|
|
|
|
|
|
|
|
libmindspore-lite.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)
|
|
|
|
MindSpore Lite版本 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)
|
|
|
|
|
|
|
|
|
|
|
|
libmindspore-lite include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/include.zip)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
libopencv_java4.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/libopencv_java4.so)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
libopencv include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/include.zip)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
@ -128,23 +114,29 @@ android{
|
|
|
|
在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
|
|
|
|
在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
|
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
# Set MindSpore Lite Dependencies.
|
|
|
|
# ============== Set MindSpore Dependencies. =============
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore)
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
|
|
|
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
|
|
|
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
|
|
|
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
|
|
|
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
|
|
|
|
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)
|
|
|
|
|
|
|
|
|
|
|
|
add_library(mindspore-lite SHARED IMPORTED )
|
|
|
|
add_library(mindspore-lite SHARED IMPORTED )
|
|
|
|
set_target_properties(mindspore-lite PROPERTIES
|
|
|
|
add_library(minddata-lite SHARED IMPORTED )
|
|
|
|
IMPORTED_LOCATION "${CMAKE_SOURCE_DIR}/libs/libmindspore-lite.so")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Set OpenCV Dependecies.
|
|
|
|
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/opencv/sdk/native/jni/include)
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
|
|
|
|
add_library(lib-opencv SHARED IMPORTED )
|
|
|
|
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
set_target_properties(lib-opencv PROPERTIES
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
|
|
|
|
IMPORTED_LOCATION "${CMAKE_SOURCE_DIR}/libs/libopencv_java4.so")
|
|
|
|
# --------------- MindSpore Lite set End. --------------------
|
|
|
|
|
|
|
|
|
|
|
|
# Link target library.
|
|
|
|
# Link target library.
|
|
|
|
target_link_libraries(
|
|
|
|
target_link_libraries(
|
|
|
|
...
|
|
|
|
...
|
|
|
|
|
|
|
|
# --- mindspore ---
|
|
|
|
|
|
|
|
minddata-lite
|
|
|
|
mindspore-lite
|
|
|
|
mindspore-lite
|
|
|
|
lib-opencv
|
|
|
|
|
|
|
|
...
|
|
|
|
...
|
|
|
|
)
|
|
|
|
)
|
|
|
|
```
|
|
|
|
```
|
|
|
@ -189,12 +181,12 @@ target_link_libraries(
|
|
|
|
|
|
|
|
|
|
|
|
- 加载模型文件并构建用于推理的计算图
|
|
|
|
- 加载模型文件并构建用于推理的计算图
|
|
|
|
```cpp
|
|
|
|
```cpp
|
|
|
|
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, mindspore::lite::Context* ctx)
|
|
|
|
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
CreateSession(modelBuffer, bufferLen, ctx);
|
|
|
|
CreateSession(modelBuffer, bufferLen, ctx);
|
|
|
|
session = mindspore::session::LiteSession::CreateSession(ctx);
|
|
|
|
session = mindspore::session::LiteSession::CreateSession(ctx);
|
|
|
|
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
|
|
|
|
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
|
|
|
|
int ret = session->CompileGraph(model); // Compile Graph
|
|
|
|
int ret = session->CompileGraph(model);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
@ -240,26 +232,30 @@ target_link_libraries(
|
|
|
|
|
|
|
|
|
|
|
|
- 获取输出数据。
|
|
|
|
- 获取输出数据。
|
|
|
|
```cpp
|
|
|
|
```cpp
|
|
|
|
// Get the mindspore inference results.
|
|
|
|
auto names = mSession->GetOutputTensorNames();
|
|
|
|
auto msOutputs = mSession->GetOutputMapByNode();
|
|
|
|
std::unordered_map<std::string,mindspore::tensor::MSTensor *> msOutputs;
|
|
|
|
std::string retStr = ProcessRunnetResult(msOutputs);
|
|
|
|
for (const auto &name : names) {
|
|
|
|
|
|
|
|
auto temp_dat =mSession->GetOutputByTensorName(name);
|
|
|
|
|
|
|
|
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string retStr = ProcessRunnetResult(msOutputs, ret);
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
- 输出数据的后续处理。
|
|
|
|
- 输出数据的后续处理。
|
|
|
|
```cpp
|
|
|
|
```cpp
|
|
|
|
std::string ProcessRunnetResult(
|
|
|
|
std::string ProcessRunnetResult(std::unordered_map<std::string,
|
|
|
|
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> msOutputs){
|
|
|
|
mindspore::tensor::MSTensor *> msOutputs, int runnetRet) {
|
|
|
|
|
|
|
|
|
|
|
|
// Get the branch of the model output.
|
|
|
|
std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
|
|
|
|
// Use iterators to get map elements.
|
|
|
|
|
|
|
|
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>>::iterator iter;
|
|
|
|
|
|
|
|
iter = msOutputs.begin();
|
|
|
|
iter = msOutputs.begin();
|
|
|
|
|
|
|
|
|
|
|
|
// The mobilenetv2.ms model output just one branch.
|
|
|
|
// The mobilenetv2.ms model output just one branch.
|
|
|
|
auto outputString = iter->first;
|
|
|
|
|
|
|
|
auto outputTensor = iter->second;
|
|
|
|
auto outputTensor = iter->second;
|
|
|
|
|
|
|
|
int tensorNum = outputTensor->ElementsNum();
|
|
|
|
|
|
|
|
MS_PRINT("Number of tensor elements:%d", tensorNum);
|
|
|
|
|
|
|
|
|
|
|
|
float *temp_scores = static_cast<float * >(branch1_tensor[0]->MutableData());
|
|
|
|
// Get a pointer to the first score.
|
|
|
|
|
|
|
|
float *temp_scores = static_cast<float * >(outputTensor->MutableData());
|
|
|
|
|
|
|
|
|
|
|
|
float scores[RET_CATEGORY_SUM];
|
|
|
|
float scores[RET_CATEGORY_SUM];
|
|
|
|
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
|
|
|
|
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
|
|
|
@ -269,10 +265,11 @@ target_link_libraries(
|
|
|
|
scores[i] = temp_scores[i];
|
|
|
|
scores[i] = temp_scores[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Score for each category.
|
|
|
|
// Converted to text information that needs to be displayed in the APP.
|
|
|
|
// Converted to text information that needs to be displayed in the APP.
|
|
|
|
std::string categoryScore = "";
|
|
|
|
std::string categoryScore = "";
|
|
|
|
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
|
|
|
|
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
|
|
|
|
categoryScore += g_labels_name_map[i];
|
|
|
|
categoryScore += labels_name_map[i];
|
|
|
|
categoryScore += ":";
|
|
|
|
categoryScore += ":";
|
|
|
|
std::string score_str = std::to_string(scores[i]);
|
|
|
|
std::string score_str = std::to_string(scores[i]);
|
|
|
|
categoryScore += score_str;
|
|
|
|
categoryScore += score_str;
|
|
|
|