You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_cast_op.py

335 lines
17 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, dtype):
super(Net, self).__init__()
self.Cast = P.Cast()
self.dtype = dtype
def construct(self, x):
return self.Cast(x, self.dtype)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_bool():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'bool'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_float16():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'float16'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_float32():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'float32'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_float64():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'float64'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_int8():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.int8
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'int8'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_int16():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.int16
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'int16'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_int32():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.int32
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'int32'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_int64():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.int64
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'int64'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_uint8():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.uint8
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'uint8'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_uint16():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.uint16
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'uint16'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_uint32():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.uint32
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'uint32'
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cast_uint64():
tensor_to_cast = []
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint16)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint32)))
tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint64)))
t = mstype.uint64
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
for tensor in tensor_to_cast:
net = Net(t)
output = net(tensor)
assert output.asnumpy().dtype == 'uint64'