You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/metrics/test_confusion_matrix.py

74 lines
2.2 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# """test_confusion_matrix"""
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import ConfusionMatrix
def test_confusion_matrix():
"""test_confusion_matrix"""
x = Tensor(np.array([1, 0, 1, 0]))
y = Tensor(np.array([1, 0, 0, 1]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([[1, 1], [1, 1]]))
def test_confusion_matrix_update_len():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(ValueError):
metric.update(x)
def test_confusion_matrix_update_dim():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
y = Tensor(np.array([1, 0]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_confusion_matrix_init_num_classes():
with pytest.raises(TypeError):
ConfusionMatrix(num_classes='1')
def test_confusion_matrix_init_normalize_value():
with pytest.raises(ValueError):
ConfusionMatrix(num_classes=2, normalize="wwe")
def test_confusion_matrix_init_threshold():
with pytest.raises(TypeError):
ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=1)
def test_confusion_matrix_runtime():
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()