You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_boundingbox_encode_op.py

81 lines
3.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetBoundingBoxEncode(nn.Cell):
def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)):
super(NetBoundingBoxEncode, self).__init__()
self.encode = P.BoundingBoxEncode(means=means, stds=stds)
def construct(self, anchor, groundtruth):
return self.encode(anchor, groundtruth)
def bbox2delta(proposals, gt, means, stds):
px = (proposals[..., 0] + proposals[..., 2]) * 0.5
py = (proposals[..., 1] + proposals[..., 3]) * 0.5
pw = proposals[..., 2] - proposals[..., 0] + 1.0
ph = proposals[..., 3] - proposals[..., 1] + 1.0
gx = (gt[..., 0] + gt[..., 2]) * 0.5
gy = (gt[..., 1] + gt[..., 3]) * 0.5
gw = gt[..., 2] - gt[..., 0] + 1.0
gh = gt[..., 3] - gt[..., 1] + 1.0
dx = (gx - px) / pw
dy = (gy - py) / ph
dw = np.log(gw / pw)
dh = np.log(gh / ph)
means = np.array(means, np.float32)
stds = np.array(stds, np.float32)
deltas = np.stack([(dx - means[0]) / stds[0], (dy - means[1]) / stds[1],
(dw - means[2]) / stds[2], (dh - means[3]) / stds[3]], axis=-1)
return deltas
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_boundingbox_encode():
anchor = np.array([[4, 1, 6, 9], [2, 5, 5, 9]]).astype(np.float32)
gt = np.array([[3, 2, 7, 7], [1, 5, 5, 8]]).astype(np.float32)
means = (0.1, 0.1, 0.2, 0.2)
stds = (2.0, 2.0, 3.0, 3.0)
anchor_box = Tensor(anchor, mindspore.float32)
groundtruth_box = Tensor(gt, mindspore.float32)
expect_deltas = bbox2delta(anchor, gt, means, stds)
error = np.ones(shape=[2, 4]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
boundingbox_encode = NetBoundingBoxEncode(means, stds)
output = boundingbox_encode(anchor_box, groundtruth_box)
diff = output.asnumpy() - expect_deltas
assert np.all(abs(diff) < error)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
boundingbox_encode = NetBoundingBoxEncode(means, stds)
output = boundingbox_encode(anchor_box, groundtruth_box)
diff = output.asnumpy() - expect_deltas
assert np.all(abs(diff) < error)