You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.0 KiB
95 lines
3.0 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" tests for quant """
|
|
import numpy as np
|
|
from mobilenetv2_combined import MobileNetV2
|
|
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
from mindspore import nn
|
|
from mindspore.nn.layer import combined
|
|
from mindspore.train.quant import quant as qat
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
"""
|
|
Lenet network
|
|
|
|
Args:
|
|
num_class (int): Num classes. Default: 10.
|
|
|
|
Returns:
|
|
Tensor, output tensor
|
|
Examples:
|
|
>>> LeNet(num_class=10)
|
|
|
|
"""
|
|
|
|
def __init__(self, num_class=10):
|
|
super(LeNet5, self).__init__()
|
|
self.num_class = num_class
|
|
self.conv1 = combined.Conv2d(
|
|
1, 6, kernel_size=5, batchnorm=True, activation='relu6')
|
|
self.conv2 = combined.Conv2d(6, 16, kernel_size=5, activation='relu')
|
|
self.fc1 = combined.Dense(16 * 5 * 5, 120, activation='relu')
|
|
self.fc2 = combined.Dense(120, 84, activation='relu')
|
|
self.fc3 = combined.Dense(84, self.num_class)
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.flattern = nn.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.flattern(x)
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
def test_qat_lenet():
|
|
net = LeNet5()
|
|
net = qat.convert_quant_network(
|
|
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
|
|
|
|
|
def test_qat_mobile():
|
|
net = MobileNetV2()
|
|
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
|
net = qat.convert_quant_network(
|
|
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
|
net(img)
|
|
|
|
|
|
def test_qat_mobile_train():
|
|
net = MobileNetV2(num_class=10)
|
|
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
|
label = Tensor(np.ones((1, 10)).astype(np.float32))
|
|
net = qat.convert_quant_network(
|
|
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
|
|
optimizer = nn.Momentum(net.trainable_params(),
|
|
learning_rate=0.1, momentum=0.9)
|
|
net = nn.WithLossCell(net, loss)
|
|
net = nn.TrainOneStepCell(net, optimizer)
|
|
net(img, label)
|