You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/custom_ops_tbe/test_square.py

62 lines
1.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from cus_square import CusSquare
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import composite as C
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad_with_sens = C.GradOperation(sens_param=True)
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.square = CusSquare()
def construct(self, data):
return self.square(data)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_net():
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
square = Net()
output = square(Tensor(x))
expect = np.array([1.0, 16.0, 81.0]).astype(np.float32)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_grad_net():
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
square = Net()
dx = grad_with_sens(square)(Tensor(x), Tensor(sens))
expect = np.array([2.0, 8.0, 18.0]).astype(np.float32)
assert (dx.asnumpy() == expect).all()