You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/parallel/ops_info/transpose_test.cc

194 lines
5.5 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <list>
#include <vector>
#include "common/common_test.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/ops_info/transpose_info.h"
#include "frontend/parallel/device_manager.h"
#include "frontend/parallel/step_parallel.h"
namespace mindspore {
namespace parallel {
class TransposeInfo;
using TransposeInfoPtr = std::shared_ptr<TransposeInfo>;
TransposeInfoPtr transpose;
class TestTransposeInfo : public UT::Common {
public:
TestTransposeInfo() {}
void SetUp();
void TearDown() {}
};
void TestTransposeInfo::SetUp() {
RankList dev_list;
for (int32_t i = 0; i < 34; i++) {
dev_list.push_back(i);
}
RankList stage_map;
stage_map.push_back(32);
stage_map.push_back(2);
int32_t local_dev = 0;
// create a new g_device_manager
g_device_manager = std::make_shared<DeviceManager>();
g_device_manager->Init(dev_list, local_dev, stage_map, "hccl");
std::unordered_map<std::string, ValuePtr> attr;
Shapes inputs_shape = {{128, 64}};
Shapes outputs_shape = {{64, 128}};
std::vector<int64_t> axis = {1, 0};
ValuePtr val0;
ValuePtr val1 = MakeValue(axis);
std::vector<ValuePtr> val = {val0, val1};
transpose = std::make_shared<TransposeInfo>("transpose_info", inputs_shape, outputs_shape, attr);
transpose->set_input_value(val);
}
TEST_F(TestTransposeInfo, InferDevMatrixShape1) {
Strategys inputs = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
transpose->Init(strategy);
Shape dev_matrix_shape = transpose->dev_matrix_shape();
Shape expect = {4, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestTransposeInfo, InferDevMatrixShape2) {
Strategys inputs = {{4, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
transpose->Init(strategy);
Shape dev_matrix_shape = transpose->dev_matrix_shape();
Shape expect = {4, 1, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestTransposeInfo, InferSliceShape1) {
Strategys str = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, str);
transpose->Init(strategy);
std::vector<TensorInfo> inputs = transpose->inputs_tensor_info();
std::vector<TensorInfo> outputs = transpose->outputs_tensor_info();
Shape input_slice_shape_expect = {32, 8};
Shape output_slice_shape_expect = {8, 32};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo output_tensor_info = outputs.at(0);
Shape input_slice_shape = input_tensor_info.slice_shape();
Shape output_slice_shape = output_tensor_info.slice_shape();
ASSERT_EQ(input_slice_shape, input_slice_shape_expect);
ASSERT_EQ(output_slice_shape, output_slice_shape_expect);
}
TEST_F(TestTransposeInfo, GetTensorLayout1) {
Strategys str = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, str);
transpose->Init(strategy);
std::vector<TensorInfo> inputs = transpose->inputs_tensor_info();
std::vector<TensorInfo> outputs = transpose->outputs_tensor_info();
TensorMap input_expect = {1, 0};
TensorMap output_expect = {0, 1};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo output_tensor_info = outputs.at(0);
Map input_tensor_map = input_tensor_info.tensor_layout().origin_tensor_map();
Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map();
ASSERT_EQ(input_tensor_map.array(), input_expect);
ASSERT_EQ(output_tensor_map.array(), output_expect);
}
TEST_F(TestTransposeInfo, GetForwardOp1) {
Strategys inputs = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
transpose->Init(strategy);
OperatorVector forward_op = transpose->forward_op();
size_t size = forward_op.size();
ASSERT_EQ(size, 0);
}
TEST_F(TestTransposeInfo, GetMirrorOPs1) {
Strategys inputs = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
transpose->Init(strategy);
MirrorOps mirror_ops = transpose->mirror_ops();
size_t size = mirror_ops.size();
ASSERT_EQ(size, 0);
}
TEST_F(TestTransposeInfo, CheckStrategy1) {
Strategys inputs = {{1, 4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
Status ret = transpose->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestTransposeInfo, CheckStrategy2) {
Strategys inputs = {{2, 4, 8}, {2, 4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
Status ret = transpose->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestTransposeInfo, CheckStrategy3) {
Strategys inputs = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
Status ret = transpose->Init(strategy);
ASSERT_EQ(ret, SUCCESS);
}
TEST_F(TestTransposeInfo, AutoStrategy1) {
ASSERT_EQ(transpose->GenerateStrategies(0), Status::SUCCESS);
std::vector<std::shared_ptr<StrategyWithCost>> sc = transpose->GetStrategyCost();
Shapes splittable_inputs = {{1, 1}};
std::vector<StrategyPtr> sp_vector;
Shapes inputs_shape = {{128, 64}};
GenerateStrategiesForIndependentInputs(0, inputs_shape, splittable_inputs, &sp_vector);
ASSERT_EQ(sc.size(), sp_vector.size());
}
} // namespace parallel
} // namespace mindspore