|
|
# Contents
|
|
|
|
|
|
- [VGG Description](#vgg-description)
|
|
|
- [Model Architecture](#model-architecture)
|
|
|
- [Dataset](#dataset)
|
|
|
- [Features](#features)
|
|
|
- [Mixed Precision](#mixed-precision)
|
|
|
- [Environment Requirements](#environment-requirements)
|
|
|
- [Quick Start](#quick-start)
|
|
|
- [Script Description](#script-description)
|
|
|
- [Script and Sample Code](#script-and-sample-code)
|
|
|
- [Script Parameters](#script-parameters)
|
|
|
- [Parameter configuration](#parameter-configuration)
|
|
|
- [Training Process](#training-process)
|
|
|
- [Training](#training)
|
|
|
- [Evaluation Process](#evaluation-process)
|
|
|
- [Evaluation](#evaluation)
|
|
|
- [Model Description](#model-description)
|
|
|
- [Performance](#performance)
|
|
|
- [Training Performance](#training-performance)
|
|
|
- [Evaluation Performance](#evaluation-performance)
|
|
|
- [Description of Random Situation](#description-of-random-situation)
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
|
|
|
|
|
|
|
|
# [VGG Description](#contents)
|
|
|
|
|
|
VGG, a very deep convolutional networks for large-scale image recognition, was proposed in 2014 and won the 1th place in object localization and 2th place in image classification task in ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
|
|
|
|
|
|
[Paper](): Simonyan K, zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
|
|
|
|
|
# [Model Architecture](#contents)
|
|
|
VGG 16 network is mainly consisted by several basic modules (including convolution and pooling layer) and three continuous Dense layer.
|
|
|
here basic modules mainly include basic operation like: **3×3 conv** and **2×2 max pooling**.
|
|
|
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
#### Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|
|
|
|
|
- CIFAR-10 Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
|
|
- Train:146M,50,000 images
|
|
|
- Test:29.3M,10,000 images
|
|
|
- Data format: binary files
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
#### Dataset used: [ImageNet2012](http://www.image-net.org/)
|
|
|
- Dataset size: ~146G, 1.28 million colorful images in 1000 classes
|
|
|
- Train: 140G, 1,281,167 images
|
|
|
- Test: 6.4G, 50, 000 images
|
|
|
- Data format: RGB images
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
#### Dataset organize way
|
|
|
|
|
|
CIFAR-10
|
|
|
|
|
|
> Unzip the CIFAR-10 dataset to any path you want and the folder structure should be as follows:
|
|
|
> ```
|
|
|
> .
|
|
|
> ├── cifar-10-batches-bin # train dataset
|
|
|
> └── cifar-10-verify-bin # infer dataset
|
|
|
> ```
|
|
|
|
|
|
ImageNet2012
|
|
|
|
|
|
> Unzip the ImageNet2012 dataset to any path you want and the folder should include train and eval dataset as follows:
|
|
|
>
|
|
|
> ```
|
|
|
> .
|
|
|
> └─dataset
|
|
|
> ├─ilsvrc # train dataset
|
|
|
> └─validation_preprocess # evaluate dataset
|
|
|
> ```
|
|
|
|
|
|
|
|
|
# [Features](#contents)
|
|
|
|
|
|
## Mixed Precision
|
|
|
|
|
|
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
|
|
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
|
|
|
|
|
|
|
|
# [Environment Requirements](#contents)
|
|
|
|
|
|
- Hardware(Ascend/GPU)
|
|
|
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
|
|
- Framework
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
|
|
- For more information, please check the resources below:
|
|
|
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
|
|
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
|
|
|
|
|
|
|
|
# [Quick Start](#contents)
|
|
|
|
|
|
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
|
|
|
|
|
- Running on Ascend
|
|
|
```python
|
|
|
# run training example
|
|
|
python train.py --data_path=[DATA_PATH] --device_id=[DEVICE_ID] > output.train.log 2>&1 &
|
|
|
|
|
|
# run distributed training example
|
|
|
sh run_distribute_train.sh [RANL_TABLE_JSON] [DATA_PATH]
|
|
|
|
|
|
# run evaluation example
|
|
|
python eval.py --data_path=[DATA_PATH] --pre_trained=[PRE_TRAINED] > output.eval.log 2>&1 &
|
|
|
```
|
|
|
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
|
|
|
Please follow the instructions in the link below:
|
|
|
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools
|
|
|
|
|
|
- Running on GPU
|
|
|
```
|
|
|
# run training example
|
|
|
python train.py --device_target="GPU" --device_id=[DEVICE_ID] --dataset=[DATASET_TYPE] --data_path=[DATA_PATH] > output.train.log 2>&1 &
|
|
|
|
|
|
# run distributed training example
|
|
|
sh run_distribute_train_gpu.sh [DATA_PATH]
|
|
|
|
|
|
# run evaluation example
|
|
|
python eval.py --device_target="GPU" --device_id=[DEVICE_ID] --dataset=[DATASET_TYPE] --data_path=[DATA_PATH] --pre_trained=[PRE_TRAINED] > output.eval.log 2>&1 &
|
|
|
```
|
|
|
|
|
|
# [Script Description](#contents)
|
|
|
|
|
|
## [Script and Sample Code](#contents)
|
|
|
|
|
|
|
|
|
```
|
|
|
├── model_zoo
|
|
|
├── README.md // descriptions about all the models
|
|
|
├── vgg16
|
|
|
├── README.md // descriptions about googlenet
|
|
|
├── scripts
|
|
|
│ ├── run_distribute_train.sh // shell script for distributed training on Ascend
|
|
|
│ ├── run_distribute_train_gpu.sh // shell script for distributed training on GPU
|
|
|
├── src
|
|
|
│ ├── utils
|
|
|
│ │ ├── logging.py // logging format setting
|
|
|
│ │ ├── sampler.py // create sampler for dataset
|
|
|
│ │ ├── util.py // util function
|
|
|
│ │ ├── var_init.py // network parameter init method
|
|
|
│ ├── config.py // parameter configuration
|
|
|
│ ├── crossentropy.py // loss caculation
|
|
|
│ ├── dataset.py // creating dataset
|
|
|
│ ├── linear_warmup.py // linear leanring rate
|
|
|
│ ├── warmup_cosine_annealing_lr.py // consine anealing learning rate
|
|
|
│ ├── warmup_step_lr.py // step or multi step learning rate
|
|
|
│ ├──vgg.py // vgg architecture
|
|
|
├── train.py // training script
|
|
|
├── eval.py // evaluation script
|
|
|
```
|
|
|
|
|
|
## [Script Parameters](#contents)
|
|
|
|
|
|
### Training
|
|
|
```
|
|
|
usage: train.py [--device_target TARGET][--data_path DATA_PATH]
|
|
|
[--dataset DATASET_TYPE][--is_distributed VALUE]
|
|
|
[--device_id DEVICE_ID][--pre_trained PRE_TRAINED]
|
|
|
[--ckpt_path CHECKPOINT_PATH][--ckpt_interval INTERVAL_STEP]
|
|
|
|
|
|
parameters/options:
|
|
|
--device_target the training backend type, Ascend or GPU, default is Ascend.
|
|
|
--dataset the dataset type, cifar10 or imagenet2012.
|
|
|
--is_distributed the way of traing, whether do distribute traing, value can be 0 or 1.
|
|
|
--data_path the storage path of dataset
|
|
|
--device_id the device which used to train model.
|
|
|
--pre_trained the pretrained checkpoint file path.
|
|
|
--ckpt_path the path to save checkpoint.
|
|
|
--ckpt_interval the epoch interval for saving checkpoint.
|
|
|
|
|
|
```
|
|
|
|
|
|
### Evaluation
|
|
|
|
|
|
```
|
|
|
usage: eval.py [--device_target TARGET][--data_path DATA_PATH]
|
|
|
[--dataset DATASET_TYPE][--pre_trained PRE_TRAINED]
|
|
|
[--device_id DEVICE_ID]
|
|
|
|
|
|
parameters/options:
|
|
|
--device_target the evaluation backend type, Ascend or GPU, default is Ascend.
|
|
|
--dataset the dataset type, cifar10 or imagenet2012.
|
|
|
--data_path the storage path of dataset.
|
|
|
--device_id the device which used to evaluate model.
|
|
|
--pre_trained the checkpoint file path used to evaluate model.
|
|
|
```
|
|
|
|
|
|
## [Parameter configuration](#contents)
|
|
|
|
|
|
Parameters for both training and evaluation can be set in config.py.
|
|
|
|
|
|
- config for vgg16, CIFAR-10 dataset
|
|
|
|
|
|
```
|
|
|
"num_classes": 10, # dataset class num
|
|
|
"lr": 0.01, # learning rate
|
|
|
"lr_init": 0.01, # initial learning rate
|
|
|
"lr_max": 0.1, # max learning rate
|
|
|
"lr_epochs": '30,60,90,120', # lr changing based epochs
|
|
|
"lr_scheduler": "step", # learning rate mode
|
|
|
"warmup_epochs": 5, # number of warmup epoch
|
|
|
"batch_size": 64, # batch size of input tensor
|
|
|
"max_epoch": 70, # only valid for taining, which is always 1 for inference
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 5e-4, # weight decay
|
|
|
"loss_scale": 1.0, # loss scale
|
|
|
"label_smooth": 0, # label smooth
|
|
|
"label_smooth_factor": 0, # label smooth factor
|
|
|
"buffer_size": 10, # shuffle buffer size
|
|
|
"image_size": '224,224', # image size
|
|
|
"pad_mode": 'same', # pad mode for conv2d
|
|
|
"padding": 0, # padding value for conv2d
|
|
|
"has_bias": False, # whether has bias in conv2d
|
|
|
"batch_norm": True, # wether has batch_norm in conv2d
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"initialize_mode": "XavierUniform", # conv2d init mode
|
|
|
"has_dropout": True # wether using Dropout layer
|
|
|
```
|
|
|
|
|
|
- config for vgg16, ImageNet2012 dataset
|
|
|
|
|
|
```
|
|
|
"num_classes": 1000, # dataset class num
|
|
|
"lr": 0.01, # learning rate
|
|
|
"lr_init": 0.01, # initial learning rate
|
|
|
"lr_max": 0.1, # max learning rate
|
|
|
"lr_epochs": '30,60,90,120', # lr changing based epochs
|
|
|
"lr_scheduler": "cosine_annealing", # learning rate mode
|
|
|
"warmup_epochs": 0, # number of warmup epoch
|
|
|
"batch_size": 32, # batch size of input tensor
|
|
|
"max_epoch": 150, # only valid for taining, which is always 1 for inference
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 1e-4, # weight decay
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"label_smooth": 1, # label smooth
|
|
|
"label_smooth_factor": 0.1, # label smooth factor
|
|
|
"buffer_size": 10, # shuffle buffer size
|
|
|
"image_size": '224,224', # image size
|
|
|
"pad_mode": 'pad', # pad mode for conv2d
|
|
|
"padding": 1, # padding value for conv2d
|
|
|
"has_bias": True, # whether has bias in conv2d
|
|
|
"batch_norm": False, # wether has batch_norm in conv2d
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"initialize_mode": "KaimingNormal", # conv2d init mode
|
|
|
"has_dropout": True # wether using Dropout layer
|
|
|
```
|
|
|
|
|
|
## [Training Process](#contents)
|
|
|
|
|
|
### Training
|
|
|
|
|
|
#### Run vgg16 on Ascend
|
|
|
|
|
|
- Training using single device(1p), using CIFAR-10 dataset in default
|
|
|
```
|
|
|
python train.py --data_path=your_data_path --device_id=6 > out.train.log 2>&1 &
|
|
|
```
|
|
|
The python command above will run in the background, you can view the results through the file `out.train.log`.
|
|
|
|
|
|
After training, you'll get some checkpoint files in specified ckpt_path, default in ./output directory.
|
|
|
|
|
|
You will get the loss value as following:
|
|
|
```
|
|
|
# grep "loss is " output.train.log
|
|
|
epoch: 1 step: 781, loss is 2.093086
|
|
|
epcoh: 2 step: 781, loss is 1.827582
|
|
|
...
|
|
|
```
|
|
|
|
|
|
- Distributed Training
|
|
|
```
|
|
|
sh run_distribute_train.sh rank_table.json your_data_path
|
|
|
```
|
|
|
The above shell script will run distribute training in the background, you can view the results through the file `train_parallel[X]/log`.
|
|
|
|
|
|
You will get the loss value as following:
|
|
|
```
|
|
|
# grep "result: " train_parallel*/log
|
|
|
train_parallel0/log:epoch: 1 step: 97, loss is 1.9060308
|
|
|
train_parallel0/log:epcoh: 2 step: 97, loss is 1.6003821
|
|
|
...
|
|
|
train_parallel1/log:epoch: 1 step: 97, loss is 1.7095519
|
|
|
train_parallel1/log:epcoh: 2 step: 97, loss is 1.7133579
|
|
|
...
|
|
|
...
|
|
|
```
|
|
|
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
|
|
|
|
|
|
|
|
#### Run vgg16 on GPU
|
|
|
|
|
|
- Training using single device(1p)
|
|
|
```
|
|
|
python train.py --device_target="GPU" --dataset="imagenet2012" --is_distributed=0 --data_path=$DATA_PATH > output.train.log 2>&1 &
|
|
|
```
|
|
|
|
|
|
- Distributed Training
|
|
|
```
|
|
|
# distributed training(8p)
|
|
|
bash scripts/run_distribute_train_gpu.sh /path/ImageNet2012/train"
|
|
|
```
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
|
|
### Evaluation
|
|
|
|
|
|
- Do eval as follows, need to specify dataset type as "cifar10" or "imagenet2012"
|
|
|
```
|
|
|
# when using cifar10 dataset
|
|
|
python eval.py --data_path=your_data_path --dataset="cifar10" --device_target="Ascend" --pre_trained=./*-70-781.ckpt > output.eval.log 2>&1 &
|
|
|
|
|
|
# when using imagenet2012 dataset
|
|
|
python eval.py --data_path=your_data_path --dataset="imagenet2012" --device_target="GPU" --pre_trained=./*-150-5004.ckpt > output.eval.log 2>&1 &
|
|
|
```
|
|
|
- The above python command will run in the background, you can view the results through the file `output.eval.log`. You will get the accuracy as following:
|
|
|
```
|
|
|
# when using cifar10 dataset
|
|
|
# grep "result: " output.eval.log
|
|
|
result: {'acc': 0.92}
|
|
|
|
|
|
# when using the imagenet2012 dataset
|
|
|
after allreduce eval: top1_correct=36636, tot=50000, acc=73.27%
|
|
|
after allreduce eval: top5_correct=45582, tot=50000, acc=91.16%
|
|
|
```
|
|
|
|
|
|
|
|
|
# [Model Description](#contents)
|
|
|
## [Performance](#contents)
|
|
|
|
|
|
### Training Performance
|
|
|
|
|
|
| Parameters | VGG16(Ascend) | VGG16(GPU) |
|
|
|
| -------------------------- | ---------------------------------------------- |------------------------------------|
|
|
|
| Model Version | VGG16 | VGG16 |
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |NV SMX2 V100-32G |
|
|
|
| uploaded Date | 08/20/2020 |08/20/2020 |
|
|
|
| MindSpore Version | 0.5.0-alpha |0.5.0-alpha |
|
|
|
| Dataset | CIFAR-10 |ImageNet2012 |
|
|
|
| Training Parameters | epoch=70, steps=781, batch_size = 64, lr=0.1 |epoch=150, steps=40036, batch_size = 32, lr=0.1 |
|
|
|
| Optimizer | Momentum |Momentum |
|
|
|
| Loss Function | SoftmaxCrossEntropy |SoftmaxCrossEntropy |
|
|
|
| outputs | probability |probability |
|
|
|
| Loss | 0.01 |1.5~2.0 |
|
|
|
| Speed | 1pc: 79 ms/step; 8pcs: 104 ms/step |1pc: 81 ms/step; 8pcs 94.4ms/step |
|
|
|
| Total time | 1pc: 72 mins; 8pcs: 11.8 mins |8pcs: 19.7 hours |
|
|
|
| Checkpoint for Fine tuning | 1.1G(.ckpt file) |1.1G(.ckpt file) |
|
|
|
| Scripts |[vgg16](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/vgg16) | |
|
|
|
|
|
|
|
|
|
### Evaluation Performance
|
|
|
|
|
|
| Parameters | VGG16(Ascend) | VGG16(GPU)
|
|
|
| ------------------- | --------------------------- |---------------------
|
|
|
| Model Version | VGG16 | VGG16 |
|
|
|
| Resource | Ascend 910 | GPU |
|
|
|
| Uploaded Date | 08/20/2020 | 08/20/2020 |
|
|
|
| MindSpore Version | 0.5.0-alpha |0.5.0-alpha |
|
|
|
| Dataset | CIFAR-10, 10,000 images |ImageNet2012, 5000 images |
|
|
|
| batch_size | 64 | 32 |
|
|
|
| outputs | probability | probability |
|
|
|
| Accuracy | 1pc: 93.4% |1pc: 73.0%; |
|
|
|
|
|
|
# [Description of Random Situation](#contents)
|
|
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). |