You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/c_api_vision_test.cc

3268 lines
120 KiB

/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
using namespace mindspore::dataset;
using mindspore::dataset::BorderType;
using mindspore::dataset::InterpolationMode;
using mindspore::dataset::Tensor;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
// Tests for vision ops (in alphabetical order)
TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 5));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 3;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create auto contrast object with default values
std::shared_ptr<TensorTransform> auto_contrast(new vision::AutoContrast());
EXPECT_NE(auto_contrast, nullptr);
// Create a Map operation on ds
ds = ds->Map({auto_contrast});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 15);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess2.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 5));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 3;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create auto contrast object
std::shared_ptr<TensorTransform> auto_contrast(new vision::AutoContrast(10, {10, 20}));
EXPECT_NE(auto_contrast, nullptr);
// Create a Map operation on ds
ds = ds->Map({auto_contrast});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 15);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestAutoContrastFail) {
// FIXME: For error tests, need to check for failure from CreateIterator execution
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastFail with invalid params.";
// Testing invalid cutoff < 0
std::shared_ptr<TensorTransform> auto_contrast1(new vision::AutoContrast(-1.0));
// FIXME: Need to check error Status is returned during CreateIterator
EXPECT_NE(auto_contrast1, nullptr);
// Testing invalid cutoff > 100
std::shared_ptr<TensorTransform> auto_contrast2(new vision::AutoContrast(110.0, {10, 20}));
EXPECT_NE(auto_contrast2, nullptr);
}
TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
/* FIXME - Resolve BoundingBoxAugment to properly handle TensorTransform input
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> bound_box_augment = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), 1.0);
EXPECT_NE(bound_box_augment, nullptr);
// Create a Map operation on ds
ds = ds->Map({bound_box_augment}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
*/
}
TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentFail with invalid params.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// Testing invalid ratio < 0.0
std::shared_ptr<TensorTransform> bound_box_augment = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), -1.0);
EXPECT_EQ(bound_box_augment, nullptr);
// Testing invalid ratio > 1.0
std::shared_ptr<TensorTransform> bound_box_augment1 = std::make_shared<vision::BoundingBoxAugment>(vision::RandomRotation({90.0}), 2.0);
EXPECT_EQ(bound_box_augment1, nullptr);
// Testing invalid transform
std::shared_ptr<TensorTransform> bound_box_augment2 = std::make_shared<vision::BoundingBoxAugment>(nullptr, 0.5);
EXPECT_EQ(bound_box_augment2, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestCenterCrop) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 5));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 3;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create centre crop object with square crop
std::shared_ptr<TensorTransform> centre_out1(new vision::CenterCrop({30}));
EXPECT_NE(centre_out1, nullptr);
// Create a Map operation on ds
ds = ds->Map({centre_out1});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 15);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCenterCropFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// center crop height value negative
std::shared_ptr<TensorTransform> center_crop1(new mindspore::dataset::vision::CenterCrop({-32, 32}));
EXPECT_NE(center_crop1, nullptr);
// center crop width value negative
std::shared_ptr<TensorTransform> center_crop2(new mindspore::dataset::vision::CenterCrop({32, -32}));
EXPECT_NE(center_crop2, nullptr);
// 0 value would result in nullptr
std::shared_ptr<TensorTransform> center_crop3(new mindspore::dataset::vision::CenterCrop({0, 32}));
EXPECT_NE(center_crop3, nullptr);
// center crop with 3 values
std::shared_ptr<TensorTransform> center_crop4(new mindspore::dataset::vision::CenterCrop({10, 20, 30}));
EXPECT_NE(center_crop4, nullptr);
}
TEST_F(MindDataTestPipeline, TestCropFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCrop with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// wrong width
std::shared_ptr<TensorTransform> crop1(new mindspore::dataset::vision::Crop({0, 0}, {32, -32}));
EXPECT_NE(crop1, nullptr);
// wrong height
std::shared_ptr<TensorTransform> crop2(new mindspore::dataset::vision::Crop({0, 0}, {-32, -32}));
EXPECT_NE(crop2, nullptr);
// zero height
std::shared_ptr<TensorTransform> crop3(new mindspore::dataset::vision::Crop({0, 0}, {0, 32}));
EXPECT_NE(crop3, nullptr);
// negative coordinates
std::shared_ptr<TensorTransform> crop4(new mindspore::dataset::vision::Crop({-1, 0}, {32, 32}));
EXPECT_NE(crop4, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess1.";
// Testing CutMixBatch on a batch of CHW images
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
int number_of_classes = 10;
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> hwc_to_chw = std::make_shared<vision::HWC2CHW>();
EXPECT_NE(hwc_to_chw, nullptr);
// Create a Map operation on ds
ds = ds->Map({hwc_to_chw}, {"image"});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(number_of_classes);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
std::shared_ptr<TensorTransform> cutmix_batch_op =
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNCHW, 1.0, 1.0);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op}, {"image", "label"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// auto label = row["label"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// MS_LOG(INFO) << "Label shape: " << label->shape();
// EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 3 == image->shape()[1] &&
// 32 == image->shape()[2] && 32 == image->shape()[3],
// true);
// EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] &&
// number_of_classes == label->shape()[1],
// true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess2.";
// Calling CutMixBatch on a batch of HWC images with default values of alpha and prob
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
int number_of_classes = 10;
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(number_of_classes);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
std::shared_ptr<TensorTransform> cutmix_batch_op = std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op}, {"image", "label"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// auto label = row["label"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// MS_LOG(INFO) << "Label shape: " << label->shape();
// EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 32 == image->shape()[1] &&
// 32 == image->shape()[2] && 3 == image->shape()[3],
// true);
// EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] &&
// number_of_classes == label->shape()[1],
// true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail1 with invalid negative alpha parameter.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create CutMixBatch operation with invalid input, alpha<0
std::shared_ptr<TensorTransform> cutmix_batch_op =
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, -1, 0.5);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid CutMixBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail2 with invalid negative prob parameter.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create CutMixBatch operation with invalid input, prob<0
std::shared_ptr<TensorTransform> cutmix_batch_op =
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 1, -0.5);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid CutMixBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail3 with invalid zero alpha parameter.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create CutMixBatch operation with invalid input, alpha=0 (boundary case)
std::shared_ptr<TensorTransform> cutmix_batch_op =
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 0.0, 0.5);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid CutMixBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail4 with invalid greater than 1 prob parameter.";
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 10;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create CutMixBatch operation with invalid input, prob>1
std::shared_ptr<TensorTransform> cutmix_batch_op =
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 1, 1.5);
EXPECT_NE(cutmix_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({cutmix_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid CutMixBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutOutFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail1 with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create object for the tensor op
// Invalid negative length
std::shared_ptr<TensorTransform> cutout_op = std::make_shared<vision::CutOut>(-10);
EXPECT_NE(cutout_op, nullptr);
// Invalid negative number of patches
cutout_op = std::make_shared<vision::CutOut>(10, -1);
EXPECT_NE(cutout_op, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutOutFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail2 with invalid params, boundary cases.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create object for the tensor op
// Invalid zero length
std::shared_ptr<TensorTransform> cutout_op = std::make_shared<vision::CutOut>(0);
EXPECT_NE(cutout_op, nullptr);
// Invalid zero number of patches
cutout_op = std::make_shared<vision::CutOut>(10, 0);
EXPECT_NE(cutout_op, nullptr);
}
TEST_F(MindDataTestPipeline, TestCutOut) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> cut_out1 = std::make_shared<vision::CutOut>(30, 5);
EXPECT_NE(cut_out1, nullptr);
std::shared_ptr<TensorTransform> cut_out2 = std::make_shared<vision::CutOut>(30);
EXPECT_NE(cut_out2, nullptr);
// Create a Map operation on ds
ds = ds->Map({cut_out1, cut_out2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestDecode) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDecode.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create Decode object
vision::Decode decode = vision::Decode(true);
// Create a Map operation on ds
ds = ds->Map({decode});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestHwcToChw) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestHwcToChw.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> channel_swap = std::make_shared<vision::HWC2CHW>();
EXPECT_NE(channel_swap, nullptr);
// Create a Map operation on ds
ds = ds->Map({channel_swap});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// check if the image is in NCHW
// EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] && 2268 == image->shape()[2] &&
// 4032 == image->shape()[3],
// true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestInvert) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestInvert.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 20));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> invert_op = std::make_shared<vision::Invert>();
EXPECT_NE(invert_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({invert_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail1 with negative alpha parameter.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create MixUpBatch operation with invalid input, alpha<0
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(-1);
EXPECT_NE(mixup_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({mixup_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid MixUpBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail2 with zero alpha parameter.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
// Create MixUpBatch operation with invalid input, alpha<0 (boundary case)
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(0.0);
EXPECT_NE(mixup_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({mixup_batch_op});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid MixUpBatch input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with explicit alpha parameter.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(2.0);
EXPECT_NE(mixup_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({mixup_batch_op}, {"image", "label"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with default alpha parameter.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 5;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
EXPECT_NE(one_hot_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({one_hot_op}, {"label"});
EXPECT_NE(ds, nullptr);
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>();
EXPECT_NE(mixup_batch_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({mixup_batch_op}, {"image", "label"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestNormalize) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalize.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> normalize(new vision::Normalize({121.0, 115.0, 0.0}, {70.0, 68.0, 71.0}));
EXPECT_NE(normalize, nullptr);
// Create a Map operation on ds
ds = ds->Map({normalize});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestNormalizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// std value at 0.0
std::shared_ptr<TensorTransform> normalize1(
new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}));
EXPECT_NE(normalize1, nullptr);
// mean out of range
std::shared_ptr<TensorTransform> normalize2(
new mindspore::dataset::vision::Normalize({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0}));
EXPECT_NE(normalize2, nullptr);
// mean out of range
std::shared_ptr<TensorTransform> normalize3(
new mindspore::dataset::vision::Normalize({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
EXPECT_NE(normalize3, nullptr);
// mean out of range
std::shared_ptr<TensorTransform> normalize4(
new mindspore::dataset::vision::Normalize({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
EXPECT_NE(normalize4, nullptr);
// normalize with 2 values (not 3 values) for mean
std::shared_ptr<TensorTransform> normalize5(
new mindspore::dataset::vision::Normalize({121.0, 115.0}, {70.0, 68.0, 71.0}));
EXPECT_NE(normalize5, nullptr);
// normalize with 2 values (not 3 values) for standard deviation
std::shared_ptr<TensorTransform> normalize6(
new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {68.0, 71.0}));
EXPECT_NE(normalize6, nullptr);
}
TEST_F(MindDataTestPipeline, TestNormalizePad) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePad.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> normalizepad(
new vision::NormalizePad({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}, "float32"));
EXPECT_NE(normalizepad, nullptr);
// Create a Map operation on ds
ds = ds->Map({normalizepad});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// EXPECT_EQ(image->shape()[2], 4);
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestNormalizePadFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePadFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// std value at 0.0
std::shared_ptr<TensorTransform> normalizepad1(
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}));
EXPECT_NE(normalizepad1, nullptr);
// normalizepad with 2 values (not 3 values) for mean
std::shared_ptr<TensorTransform> normalizepad2(
new mindspore::dataset::vision::NormalizePad({121.0, 115.0}, {70.0, 68.0, 71.0}));
EXPECT_NE(normalizepad2, nullptr);
// normalizepad with 2 values (not 3 values) for standard deviation
std::shared_ptr<TensorTransform> normalizepad3(
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0}));
EXPECT_NE(normalizepad3, nullptr);
// normalizepad with invalid dtype
std::shared_ptr<TensorTransform> normalizepad4(
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123"));
EXPECT_NE(normalizepad4, nullptr);
}
TEST_F(MindDataTestPipeline, TestPad) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> pad_op1(new vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric));
EXPECT_NE(pad_op1, nullptr);
std::shared_ptr<TensorTransform> pad_op2(new vision::Pad({1}, {1, 1, 1}, BorderType::kEdge));
EXPECT_NE(pad_op2, nullptr);
std::shared_ptr<TensorTransform> pad_op3(new vision::Pad({1, 4}));
EXPECT_NE(pad_op3, nullptr);
// Create a Map operation on ds
ds = ds->Map({pad_op1, pad_op2, pad_op3});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomAffineFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> affine1(new vision::RandomAffine({0.0, 0.0}, {}));
EXPECT_NE(affine1, nullptr);
// Invalid number of values for translate
std::shared_ptr<TensorTransform> affine2(new vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1, 1}));
EXPECT_NE(affine2, nullptr);
// Invalid number of values for shear
std::shared_ptr<TensorTransform> affine3(new vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0}));
EXPECT_NE(affine3, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> affine(
new vision::RandomAffine({30.0, 30.0}, {-1.0, 1.0, -1.0, 1.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}));
EXPECT_NE(affine, nullptr);
// Create a Map operation on ds
ds = ds->Map({affine});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> affine(new vision::RandomAffine({0.0, 0.0}));
EXPECT_NE(affine, nullptr);
// Create a Map operation on ds
ds = ds->Map({affine});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomColor) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColor with non-default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Valid case: Set lower bound and upper bound to be the same value zero
std::shared_ptr<TensorTransform> random_color_op_1 = std::make_shared<vision::RandomColor>(0.0, 0.0);
EXPECT_NE(random_color_op_1, nullptr);
// Failure case: Set invalid lower bound greater than upper bound
// FIXME: For error tests, need to check for failure from CreateIterator execution
std::shared_ptr<TensorTransform> random_color_op_2 = std::make_shared<vision::RandomColor>(1.0, 0.1);
EXPECT_NE(random_color_op_2, nullptr);
// Valid case: Set lower bound as zero and less than upper bound
std::shared_ptr<TensorTransform> random_color_op_3 = std::make_shared<vision::RandomColor>(0.0, 1.1);
EXPECT_NE(random_color_op_3, nullptr);
// Failure case: Set invalid negative lower bound
// FIXME: For error tests, need to check for failure from CreateIterator execution
std::shared_ptr<TensorTransform> random_color_op_4 = std::make_shared<vision::RandomColor>(-0.5, 0.5);
EXPECT_NE(random_color_op_4, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_color_op_1, random_color_op_3});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomColorAdjust) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjust.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Use single value for vectors
std::shared_ptr<TensorTransform> random_color_adjust1(new vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5}));
EXPECT_NE(random_color_adjust1, nullptr);
// Use same 2 values for vectors
std::shared_ptr<TensorTransform> random_color_adjust2(new
vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5}, {0.5, 0.5}));
EXPECT_NE(random_color_adjust2, nullptr);
// Use different 2 value for vectors
std::shared_ptr<TensorTransform> random_color_adjust3(new
vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5}, {0.25, 0.5}));
EXPECT_NE(random_color_adjust3, nullptr);
// Use default input values
std::shared_ptr<TensorTransform> random_color_adjust4(new vision::RandomColorAdjust());
EXPECT_NE(random_color_adjust4, nullptr);
// Use subset of explicitly set parameters
std::shared_ptr<TensorTransform> random_color_adjust5(new vision::RandomColorAdjust({0.0, 0.5}, {0.25}));
EXPECT_NE(random_color_adjust5, nullptr);
// Create a Map operation on ds
ds = ds->Map(
{random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4, random_color_adjust5});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomColorAdjustFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjustFail.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// brightness out of range
std::shared_ptr<TensorTransform> random_color_adjust1(new vision::RandomColorAdjust({-1.0}));
EXPECT_NE(random_color_adjust1, nullptr);
// contrast out of range
std::shared_ptr<TensorTransform> random_color_adjust2(new vision::RandomColorAdjust({1.0}, {-0.1}));
EXPECT_NE(random_color_adjust2, nullptr);
// saturation out of range
std::shared_ptr<TensorTransform> random_color_adjust3(new vision::RandomColorAdjust({0.0}, {0.0}, {-0.2}));
EXPECT_NE(random_color_adjust3, nullptr);
// hue out of range
std::shared_ptr<TensorTransform> random_color_adjust4(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.6}));
EXPECT_NE(random_color_adjust4, nullptr);
std::shared_ptr<TensorTransform> random_color_adjust5(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.5, 0.6}));
EXPECT_NE(random_color_adjust5, nullptr);
std::shared_ptr<TensorTransform> random_color_adjust6(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {0.51}));
EXPECT_NE(random_color_adjust6, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomCropSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Testing siez of size vector is 1
std::shared_ptr<TensorTransform> random_crop(new vision::RandomCrop({20}));
EXPECT_NE(random_crop, nullptr);
// Testing siez of size vector is 2
std::shared_ptr<TensorTransform> random_crop1(new vision::RandomCrop({20, 20}));
EXPECT_NE(random_crop1, nullptr);
// Testing siez of paddiing vector is 1
std::shared_ptr<TensorTransform> random_crop2(new vision::RandomCrop({20, 20}, {10}));
EXPECT_NE(random_crop2, nullptr);
// Testing siez of paddiing vector is 2
std::shared_ptr<TensorTransform> random_crop3(new vision::RandomCrop({20, 20}, {10, 20}));
EXPECT_NE(random_crop3, nullptr);
// Testing siez of paddiing vector is 2
std::shared_ptr<TensorTransform> random_crop4(new vision::RandomCrop({20, 20}, {10, 10, 10, 10}));
EXPECT_NE(random_crop4, nullptr);
// Testing siez of fill_value vector is 1
std::shared_ptr<TensorTransform> random_crop5(new vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {5}));
EXPECT_NE(random_crop5, nullptr);
// Testing siez of fill_value vector is 3
std::shared_ptr<TensorTransform> random_crop6(new vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {4, 4, 4}));
EXPECT_NE(random_crop6, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_crop, random_crop1, random_crop2, random_crop3, random_crop4, random_crop5, random_crop6});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomCropFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Testing the size parameter is negative.
std::shared_ptr<TensorTransform> random_crop(new vision::RandomCrop({-28, 28}));
EXPECT_NE(random_crop, nullptr);
// Testing the size parameter is None.
std::shared_ptr<TensorTransform> random_crop1(new vision::RandomCrop({}));
EXPECT_NE(random_crop1, nullptr);
// Testing the size of size vector is 3.
std::shared_ptr<TensorTransform> random_crop2(new vision::RandomCrop({28, 28, 28}));
EXPECT_NE(random_crop2, nullptr);
// Testing the padding parameter is negative.
std::shared_ptr<TensorTransform> random_crop3(new vision::RandomCrop({28, 28}, {-5}));
EXPECT_NE(random_crop3, nullptr);
// Testing the size of padding vector is empty.
std::shared_ptr<TensorTransform> random_crop4(new vision::RandomCrop({28, 28}, {}));
EXPECT_NE(random_crop4, nullptr);
// Testing the size of padding vector is 3.
std::shared_ptr<TensorTransform> random_crop5(new vision::RandomCrop({28, 28}, {5, 5, 5}));
EXPECT_NE(random_crop5, nullptr);
// Testing the size of padding vector is 5.
std::shared_ptr<TensorTransform> random_crop6(new vision::RandomCrop({28, 28}, {5, 5, 5, 5, 5}));
EXPECT_NE(random_crop6, nullptr);
// Testing the size of fill_value vector is empty.
std::shared_ptr<TensorTransform> random_crop7(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {}));
EXPECT_NE(random_crop7, nullptr);
// Testing the size of fill_value vector is 2.
std::shared_ptr<TensorTransform> random_crop8(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0}));
EXPECT_NE(random_crop8, nullptr);
// Testing the size of fill_value vector is 4.
std::shared_ptr<TensorTransform> random_crop9(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0, 0, 0}));
EXPECT_NE(random_crop9, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomCropWithBboxSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_crop(new mindspore::dataset::vision::RandomCropWithBBox({128, 128}));
EXPECT_NE(random_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_crop}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0], 128);
// EXPECT_EQ(image->shape()[1], 128);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomCropWithBboxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// The size parameter is negative.
std::shared_ptr<TensorTransform> random_crop0(new vision::RandomCropWithBBox({-10}));
EXPECT_NE(random_crop0, nullptr);
// The parameter in the padding vector is negative.
std::shared_ptr<TensorTransform> random_crop1(new vision::RandomCropWithBBox({10, 10}, {-2, 2, 2, 2}));
EXPECT_NE(random_crop1, nullptr);
// The size container is empty.
std::shared_ptr<TensorTransform> random_crop2(new vision::RandomCropWithBBox({}));
EXPECT_NE(random_crop2, nullptr);
// The size of the size container is too large.
std::shared_ptr<TensorTransform> random_crop3(new vision::RandomCropWithBBox({10, 10, 10}));
EXPECT_NE(random_crop3, nullptr);
// The padding container is empty.
std::shared_ptr<TensorTransform> random_crop4(new vision::RandomCropWithBBox({10, 10}, {}));
EXPECT_NE(random_crop4, nullptr);
// The size of the padding container is too large.
std::shared_ptr<TensorTransform> random_crop5(new vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5, 5}));
EXPECT_NE(random_crop5, nullptr);
// The fill_value container is empty.
std::shared_ptr<TensorTransform> random_crop6(new vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {}));
EXPECT_NE(random_crop6, nullptr);
// The size of the fill_value container is too large.
std::shared_ptr<TensorTransform> random_crop7(new
vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {3, 3, 3, 3}));
EXPECT_NE(random_crop7, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create object for the tensor op
// Invalid negative input
std::shared_ptr<TensorTransform> random_horizontal_flip_op = std::make_shared<vision::RandomHorizontalFlip>(-0.5);
EXPECT_NE(random_horizontal_flip_op, nullptr);
// Invalid >1 input
random_horizontal_flip_op = std::make_shared<vision::RandomHorizontalFlip>(2);
EXPECT_NE(random_horizontal_flip_op, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_horizontal_flip_op = std::make_shared<vision::RandomHorizontalFlipWithBBox>(0.5);
EXPECT_NE(random_horizontal_flip_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_horizontal_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Incorrect prob parameter.
std::shared_ptr<TensorTransform> random_horizontal_flip_op = std::make_shared<vision::RandomHorizontalFlipWithBBox>(-1.0);
EXPECT_NE(random_horizontal_flip_op, nullptr);
// Incorrect prob parameter.
std::shared_ptr<TensorTransform> random_horizontal_flip_op1 = std::make_shared<vision::RandomHorizontalFlipWithBBox>(2.0);
EXPECT_NE(random_horizontal_flip_op1, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomHorizontalAndVerticalFlip) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalAndVerticalFlip for horizontal and vertical flips.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlip>(0.75);
EXPECT_NE(random_vertical_flip_op, nullptr);
std::shared_ptr<TensorTransform> random_horizontal_flip_op = std::make_shared<vision::RandomHorizontalFlip>(0.5);
EXPECT_NE(random_horizontal_flip_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomPosterizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create objects for the tensor ops
// Invalid max > 8
std::shared_ptr<TensorTransform> posterize1(new vision::RandomPosterize({1, 9}));
EXPECT_NE(posterize1, nullptr);
// Invalid min < 1
std::shared_ptr<TensorTransform> posterize2(new vision::RandomPosterize({0, 8}));
EXPECT_NE(posterize2, nullptr);
// min > max
std::shared_ptr<TensorTransform> posterize3(new vision::RandomPosterize({8, 1}));
EXPECT_NE(posterize3, nullptr);
// empty
//std::shared_ptr<TensorTransform> posterize4(new vision::RandomPosterize({}));
// EXPECT_NE(posterize4, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess1 with non-default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> posterize(new vision::RandomPosterize({1, 4}));
EXPECT_NE(posterize, nullptr);
// Create a Map operation on ds
ds = ds->Map({posterize});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess2 with default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> posterize(new vision::RandomPosterize());
EXPECT_NE(posterize, nullptr);
// Create a Map operation on ds
ds = ds->Map({posterize});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizeSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 5));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resize(new vision::RandomResize({66}));
EXPECT_NE(random_resize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resize}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 66, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 5);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizeSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess2 with (height, width) input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 3));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resize(new vision::RandomResize({66, 77}));
EXPECT_NE(random_resize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resize}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 66 && image->shape()[1] == 77, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeFail incorrect size.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// RandomResize : size must only contain positive integers
std::shared_ptr<TensorTransform> random_resize1(new vision::RandomResize({-66, 77}));
EXPECT_NE(random_resize1, nullptr);
// RandomResize : size must only contain positive integers
std::shared_ptr<TensorTransform> random_resize2(new vision::RandomResize({0, 77}));
EXPECT_NE(random_resize2, nullptr);
// RandomResize : size must be a vector of one or two values
std::shared_ptr<TensorTransform> random_resize3(new vision::RandomResize({1, 2, 3}));
EXPECT_NE(random_resize3, nullptr);
// RandomResize : size must be a vector of one or two values
std::shared_ptr<TensorTransform> random_resize4(new vision::RandomResize({}));
EXPECT_NE(random_resize4, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess1 with single integer input.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resize(new vision::RandomResizeWithBBox({88}));
EXPECT_NE(random_resize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resize}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 88, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess2 with (height, width) input.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resize(new vision::RandomResizeWithBBox({88, 99}));
EXPECT_NE(random_resize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resize}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 88 && image->shape()[1] == 99, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 8);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxFail incorrect size.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// RandomResizeWithBBox : size must only contain positive integers
std::shared_ptr<TensorTransform> random_resize_with_bbox1(new vision::RandomResizeWithBBox({-66, 77}));
EXPECT_NE(random_resize_with_bbox1, nullptr);
// RandomResizeWithBBox : size must be a vector of one or two values
std::shared_ptr<TensorTransform> random_resize_with_bbox2(new vision::RandomResizeWithBBox({1, 2, 3}));
EXPECT_NE(random_resize_with_bbox2, nullptr);
// RandomResizeWithBBox : size must be a vector of one or two values
std::shared_ptr<TensorTransform> random_resize_with_bbox3(new vision::RandomResizeWithBBox({}));
EXPECT_NE(random_resize_with_bbox3, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess1) {
// Testing RandomResizedCrop with default values
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess2) {
// Testing RandomResizedCrop with non-default values
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new
vision::RandomResizedCrop({5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropFail1) {
// This should fail because size has negative value
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5, -10}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid RandomResizedCrop input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropFail2) {
// This should fail because scale isn't in {min, max} format
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5, 10}, {4, 3}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid RandomResizedCrop input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropFail3) {
// This should fail because ratio isn't in {min, max} format
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5, 10}, {4, 5}, {7, 6}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid RandomResizedCrop input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropFail4) {
// This should fail because scale has a size of more than 2
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5, 10, 20}, {4, 5}, {7, 6}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop});
EXPECT_NE(ds, nullptr);
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Invalid RandomResizedCrop input
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess1) {
// Testing RandomResizedCropWithBBox with default values
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox({5}));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess2) {
// Testing RandomResizedCropWithBBox with non-default values
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox(
{5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20));
EXPECT_NE(random_resized_crop, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_resized_crop}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail1) {
// FIXME: For error tests, need to check for failure from CreateIterator execution
// This should fail because size has negative value
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox({5, -10}));
EXPECT_NE(random_resized_crop, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail2) {
// FIXME: For error tests, need to check for failure from CreateIterator execution
// This should fail because scale isn't in {min, max} format
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10}, {4, 3}));
EXPECT_NE(random_resized_crop, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail3) {
// FIXME: For error tests, need to check for failure from CreateIterator execution
// This should fail because ratio isn't in {min, max} format
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10}, {4, 5}, {7, 6}));
EXPECT_NE(random_resized_crop, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail4) {
// FIXME: For error tests, need to check for failure from CreateIterator execution
// This should fail because scale has a size of more than 2
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10, 20}, {4, 5}, {7, 6}));
EXPECT_NE(random_resized_crop, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomRotation) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotation.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Testing the size of degrees is 1
std::shared_ptr<TensorTransform> random_rotation_op(new vision::RandomRotation({180}));
EXPECT_NE(random_rotation_op, nullptr);
// Testing the size of degrees is 2
std::shared_ptr<TensorTransform> random_rotation_op1(new vision::RandomRotation({-180, 180}));
EXPECT_NE(random_rotation_op1, nullptr);
// Testing the size of fill_value is 1
std::shared_ptr<TensorTransform> random_rotation_op2(new
vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2}));
EXPECT_NE(random_rotation_op2, nullptr);
// Testing the size of fill_value is 3
std::shared_ptr<TensorTransform> random_rotation_op3(new
vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2, 2, 2}));
EXPECT_NE(random_rotation_op3, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_rotation_op, random_rotation_op1, random_rotation_op2, random_rotation_op3});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomRotationFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotationFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Testing the size of degrees vector is 0
std::shared_ptr<TensorTransform> random_rotation_op(new vision::RandomRotation({}));
EXPECT_NE(random_rotation_op, nullptr);
// Testing the size of degrees vector is 3
std::shared_ptr<TensorTransform> random_rotation_op1(new vision::RandomRotation({-50.0, 50.0, 100.0}));
EXPECT_NE(random_rotation_op1, nullptr);
// Test the case where the first column value of degrees is greater than the second column value
std::shared_ptr<TensorTransform> random_rotation_op2(new vision::RandomRotation({50.0, -50.0}));
EXPECT_NE(random_rotation_op2, nullptr);
// Testing the size of center vector is 1
std::shared_ptr<TensorTransform> random_rotation_op3(new vision::RandomRotation(
{-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0}));
EXPECT_NE(random_rotation_op3, nullptr);
// Testing the size of center vector is 3
std::shared_ptr<TensorTransform> random_rotation_op4(new vision::RandomRotation(
{-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0, -1.0}));
EXPECT_NE(random_rotation_op4, nullptr);
// Testing the size of fill_value vector is 2
std::shared_ptr<TensorTransform> random_rotation_op5(new vision::RandomRotation(
{-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2}));
EXPECT_NE(random_rotation_op5, nullptr);
// Testing the size of fill_value vector is 4
std::shared_ptr<TensorTransform> random_rotation_op6(new vision::RandomRotation(
{-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2, 2, 2}));
EXPECT_NE(random_rotation_op6, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicySuccess.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 7));
EXPECT_NE(ds, nullptr);
/* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input
// Create objects for the tensor ops
// Valid case: TensorTransform is not null and probability is between (0,1)
std::shared_ptr<TensorTransform> random_select_subpolicy(new vision::RandomSelectSubpolicy(
{{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_select_subpolicy});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 7);
// Manually terminate the pipeline
iter->Stop();
*/
}
TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicyFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicyFail.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input
// RandomSelectSubpolicy : probability of transform must be between 0.0 and 1.0
std::shared_ptr<TensorTransform> random_select_subpolicy1(new vision::RandomSelectSubpolicy(
{{{vision::Invert(), 1.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy1, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy2(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{nullptr, 1}}}));
EXPECT_NE(random_select_subpolicy2, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy3(new vision::RandomSelectSubpolicy({}));
EXPECT_NE(random_select_subpolicy3, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy4(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {}}));
EXPECT_NE(random_select_subpolicy4, nullptr);
// RandomSelectSubpolicy: policy must not be empty
std::shared_ptr<TensorTransform> random_select_subpolicy5(new vision::RandomSelectSubpolicy({{{}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}));
EXPECT_NE(random_select_subpolicy5, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestRandomSharpness) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSharpness.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Valid case: Input start degree and end degree
std::shared_ptr<TensorTransform> random_sharpness_op_1(new vision::RandomSharpness({0.4, 2.3}));
EXPECT_NE(random_sharpness_op_1, nullptr);
// Failure case: Empty degrees vector
//
// std::shared_ptr<TensorTransform> random_sharpness_op_2(new vision::RandomSharpness({}));
//
// EXPECT_NE(random_sharpness_op_2, nullptr);
// Valid case: Use default input values
std::shared_ptr<TensorTransform> random_sharpness_op_3(new vision::RandomSharpness());
EXPECT_NE(random_sharpness_op_3, nullptr);
// Failure case: Single degree value
// FIXME: For error tests, need to check for failure from CreateIterator execution
std::shared_ptr<TensorTransform> random_sharpness_op_4(new vision::RandomSharpness({0.1}));
EXPECT_NE(random_sharpness_op_4, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_sharpness_op_1, random_sharpness_op_3});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSucess1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::vector<uint8_t> threshold = {10, 100};
std::shared_ptr<TensorTransform> random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>(threshold);
EXPECT_NE(random_solarize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_solarize});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSuccess2 with default parameters.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>();
EXPECT_NE(random_solarize, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_solarize});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomSolarizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
std::vector<uint8_t> threshold = {13, 1};
std::shared_ptr<TensorTransform> random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>(threshold);
EXPECT_NE(random_solarize, nullptr);
threshold = {1, 2, 3};
random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>(threshold);
EXPECT_NE(random_solarize, nullptr);
threshold = {1};
random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>(threshold);
EXPECT_NE(random_solarize, nullptr);
threshold = {};
random_solarize = std::make_shared<mindspore::dataset::vision::RandomSolarize>(threshold);
EXPECT_NE(random_solarize, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomVerticalFlipFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create object for the tensor op
// Invalid negative input
std::shared_ptr<TensorTransform> random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlip>(-0.5);
EXPECT_NE(random_vertical_flip_op, nullptr);
// Invalid >1 input
random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlip>(1.1);
EXPECT_NE(random_vertical_flip_op, nullptr);
}
TEST_F(MindDataTestPipeline, TestResizeFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// negative resize value
std::shared_ptr<TensorTransform> resize_op1(new mindspore::dataset::vision::Resize({30, -30}));
EXPECT_NE(resize_op1, nullptr);
// zero resize value
std::shared_ptr<TensorTransform> resize_op2(new mindspore::dataset::vision::Resize({0, 30}));
EXPECT_NE(resize_op2, nullptr);
// resize with 3 values
std::shared_ptr<TensorTransform> resize_op3(new mindspore::dataset::vision::Resize({30, 20, 10}));
EXPECT_NE(resize_op3, nullptr);
}
TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({30}));
EXPECT_NE(resize_with_bbox_op, nullptr);
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({30, 30}));
EXPECT_NE(resize_with_bbox_op1, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Testing negative resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({10, -10}));
EXPECT_NE(resize_with_bbox_op, nullptr);
// Testing negative resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({-10}));
EXPECT_NE(resize_with_bbox_op1, nullptr);
// Testinig zero resize value
std::shared_ptr<TensorTransform> resize_with_bbox_op2(new vision::ResizeWithBBox({0, 10}));
EXPECT_NE(resize_with_bbox_op2, nullptr);
// Testing resize with 3 values
std::shared_ptr<TensorTransform> resize_with_bbox_op3(new vision::ResizeWithBBox({10, 10, 10}));
EXPECT_NE(resize_with_bbox_op3, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxSuccess.";
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlipWithBBox>(0.4);
EXPECT_NE(random_vertical_flip_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_vertical_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 3);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxFail with invalid parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// Create an VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
// Incorrect prob parameter.
std::shared_ptr<TensorTransform> random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlipWithBBox>(-0.5);
EXPECT_NE(random_vertical_flip_op, nullptr);
// Incorrect prob parameter.
std::shared_ptr<TensorTransform> random_vertical_flip_op1 = std::make_shared<vision::RandomVerticalFlipWithBBox>(3.0);
EXPECT_NE(random_vertical_flip_op1, nullptr);
}
TEST_F(MindDataTestPipeline, TestResize1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 6));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 4;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create resize object with single integer input
std::shared_ptr<TensorTransform> resize_op(new vision::Resize({30}));
EXPECT_NE(resize_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 24);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRescaleSucess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, SequentialSampler(0, 1));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
auto image = row["image"];
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0, 0.0));
EXPECT_NE(rescale, nullptr);
// Convert to the same type
std::shared_ptr<TensorTransform> type_cast(new transforms::TypeCast("uint8"));
EXPECT_NE(type_cast, nullptr);
ds = ds->Map({rescale, type_cast}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter1 = ds->CreateIterator();
EXPECT_NE(iter1, nullptr);
// Iterate the dataset and get each row1
std::unordered_map<std::string, mindspore::MSTensor> row1;
iter1->GetNextRow(&row1);
auto image1 = row1["image"];
// EXPECT_EQ(*image, *image1);
// Manually terminate the pipeline
iter1->Stop();
}
TEST_F(MindDataTestPipeline, TestRescaleSucess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess2 with different params.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 1));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0 / 255, 1.0));
EXPECT_NE(rescale, nullptr);
ds = ds->Map({rescale}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 1);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRescaleFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// incorrect negative rescale parameter
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(-1.0, 0.0));
EXPECT_NE(rescale, nullptr);
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) {
MS_LOG(INFO)
<< "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
vision::SoftDvppDecodeRandomCropResizeJpeg({500}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 500, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) {
MS_LOG(INFO)
<< "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess2 with (height, width) input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 6));
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
// EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 600, true);
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
auto soft_dvpp_decode_random_crop_resize_jpeg1(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
auto soft_dvpp_decode_random_crop_resize_jpeg2(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values
auto soft_dvpp_decode_random_crop_resize_jpeg3(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0
auto soft_dvpp_decode_random_crop_resize_jpeg4(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max)
auto soft_dvpp_decode_random_crop_resize_jpeg5(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values
auto soft_dvpp_decode_random_crop_resize_jpeg6(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0
auto soft_dvpp_decode_random_crop_resize_jpeg7(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max)
auto soft_dvpp_decode_random_crop_resize_jpeg8(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values
auto soft_dvpp_decode_random_crop_resize_jpeg9(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr);
// SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1
auto soft_dvpp_decode_random_crop_resize_jpeg10(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0));
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr);
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 4));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 3;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create SoftDvppDecodeResizeJpeg object with single integer input
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({1134}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 12);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess2 with (height, width) input.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 2));
EXPECT_NE(ds, nullptr);
// Create SoftDvppDecodeResizeJpeg object with single integer input
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({100, 200}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
// CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpeg({}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op1, nullptr);
// SoftDvppDecodeResizeJpeg: size must be a vector of one or two values
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op2(new vision::SoftDvppDecodeResizeJpeg({1, 2, 3}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op2, nullptr);
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op3(new vision::SoftDvppDecodeResizeJpeg({20, -20}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op3, nullptr);
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpeg({0}));
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op4, nullptr);
}
TEST_F(MindDataTestPipeline, TestUniformAugmentFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail1 with invalid num_ops parameter.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> random_crop_op(new vision::RandomCrop({28, 28}));
EXPECT_NE(random_crop_op, nullptr);
std::shared_ptr<TensorTransform> center_crop_op(new vision::CenterCrop({16, 16}));
EXPECT_NE(center_crop_op, nullptr);
// FIXME: For error tests, need to check for failure from CreateIterator execution
// UniformAug: num_ops must be greater than 0
std::shared_ptr<TensorTransform> uniform_aug_op1(new vision::UniformAugment({random_crop_op, center_crop_op}, 0));
EXPECT_EQ(uniform_aug_op1, nullptr);
// UniformAug: num_ops must be greater than 0
std::shared_ptr<TensorTransform> uniform_aug_op2(new vision::UniformAugment({random_crop_op, center_crop_op}, -1));
EXPECT_EQ(uniform_aug_op2, nullptr);
// UniformAug: num_ops is greater than transforms size
std::shared_ptr<TensorTransform> uniform_aug_op3(new vision::UniformAugment({random_crop_op, center_crop_op}, 3));
EXPECT_EQ(uniform_aug_op3, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestUniformAugmentFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail2 with invalid transform.";
// FIXME: For error tests, need to check for failure from CreateIterator execution
/*
// UniformAug: transform ops must not be null
std::shared_ptr<TensorTransform> uniform_aug_op1(new vision::UniformAugment({vision::RandomCrop({-28})}, 1));
EXPECT_NE(uniform_aug_op1, nullptr);
// UniformAug: transform ops must not be null
std::shared_ptr<TensorTransform> uniform_aug_op2(new vision::UniformAugment({vision::RandomCrop({28}), nullptr}, 2));
EXPECT_NE(uniform_aug_op2, nullptr);
// UniformAug: transform list must not be empty
std::shared_ptr<TensorTransform> uniform_aug_op3(new vision::UniformAugment({}, 1));
EXPECT_NE(uniform_aug_op3, nullptr);
*/
}
TEST_F(MindDataTestPipeline, TestUniformAugWithOps) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugWithOps.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, "all", RandomSampler(false, 20));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 1;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorTransform> resize_op(new vision::Resize({30, 30}));
EXPECT_NE(resize_op, nullptr);
std::shared_ptr<TensorTransform> random_crop_op(new vision::RandomCrop({28, 28}));
EXPECT_NE(random_crop_op, nullptr);
std::shared_ptr<TensorTransform> center_crop_op(new vision::CenterCrop({16, 16}));
EXPECT_NE(center_crop_op, nullptr);
std::shared_ptr<TensorTransform> uniform_aug_op(new vision::UniformAugment({random_crop_op, center_crop_op}, 2));
EXPECT_NE(uniform_aug_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op, uniform_aug_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestVisionOperationName) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName.";
std::string correct_name;
// Create object for the tensor op, and check the name
/* FIXME - Update and move test to IR level
std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
correct_name = "RandomVerticalFlip";
EXPECT_EQ(correct_name, random_vertical_flip_op->Name());
// Create object for the tensor op, and check the name
std::shared_ptr<TensorOperation> softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1});
correct_name = "SoftDvppDecodeResizeJpeg";
EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name());
*/
}