You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
3.2 KiB
77 lines
3.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Evaluate MobilenetV2 on ImageNet"""
|
|
|
|
import os
|
|
import argparse
|
|
|
|
from mindspore import context
|
|
from mindspore import nn
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.train.quant import quant
|
|
|
|
from src.mobilenetV2 import mobilenetV2
|
|
from src.dataset import create_dataset
|
|
from src.config import config_ascend
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default=None, help='Run device target')
|
|
parser.add_argument('--quantization_aware', type=bool, default=False, help='Use quantization aware training')
|
|
args_opt = parser.parse_args()
|
|
|
|
if __name__ == '__main__':
|
|
config_device_target = None
|
|
if args_opt.device_target == "Ascend":
|
|
config_device_target = config_ascend
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
|
device_id=device_id, save_graphs=False)
|
|
|
|
else:
|
|
raise ValueError("Unsupported device target: {}.".format(args_opt.device_target))
|
|
|
|
# define fusion network
|
|
network = mobilenetV2(num_classes=config_device_target.num_classes)
|
|
if args_opt.quantization_aware:
|
|
# convert fusion network to quantization aware network
|
|
network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
|
|
# define network loss
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
|
|
|
# define dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=False,
|
|
config=config_device_target,
|
|
device_target=args_opt.device_target,
|
|
batch_size=config_device_target.batch_size)
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
# load checkpoint
|
|
if args_opt.checkpoint_path:
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
load_param_into_net(network, param_dict)
|
|
network.set_train(False)
|
|
|
|
# define model
|
|
model = Model(network, loss_fn=loss, metrics={'acc'})
|
|
|
|
print("============== Starting Validation ==============")
|
|
res = model.eval(dataset)
|
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
print("============== End Validation ==============")
|