You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.5 KiB
1.5 KiB
LeNet Example
Description
Training LeNet with MNIST dataset in MindSpore.
This is the simple and basic tutorial for constructing a network in MindSpore.
Requirements
-
Install MindSpore.
-
Download the MNIST dataset, the directory structure is as follows:
└─MNIST_Data
├─test
│ t10k-images.idx3-ubyte
│ t10k-labels.idx1-ubyte
│
└─train
train-images.idx3-ubyte
train-labels.idx1-ubyte
Running the example
# train LeNet, hyperparameter setting in config.py
python train.py --data_path MNIST_Data
You will get the loss value of each step as following:
epoch: 1 step: 1, loss is 2.3040335
...
epoch: 1 step: 1739, loss is 0.06952668
epoch: 1 step: 1740, loss is 0.05038793
epoch: 1 step: 1741, loss is 0.05018193
...
Then, evaluate LeNet according to network model
# evaluate LeNet, after 1 epoch training, the accuracy is up to 96.5%
python eval.py --data_path MNIST_Data --mode test --ckpt_path checkpoint_lenet-1_1875.ckpt
Note
Here are some optional parameters:
--device_target {Ascend,GPU,CPU}
device where the code will be implemented (default: Ascend)
--data_path DATA_PATH
path where the dataset is saved
--dataset_sink_mode DATASET_SINK_MODE
dataset_sink_mode is False or True
You can run python train.py -h
or python eval.py -h
to get more information.