You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_two_weights_parameter.py

79 lines
2.8 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor, Parameter, ParameterTuple
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import functional as F
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3):
super(NetWithLoss, self).__init__()
self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy3)
self.network = network
def construct(self, x, b):
predict = self.network(x)
return self.loss(predict, b)[0]
class OneStepCell(nn.Cell):
def __init__(self, network):
super(OneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.weights = ParameterTuple(network.network.trainable_params())
def construct(self, data, label):
weights = self.weights
grads = C.grad_by_list(self.network, weights)(data, label)
return grads
def test_two_weights_parameter():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, weight, weight2):
super().__init__()
self.weight = Parameter(weight, "w1", requires_grad=True)
self.weight2 = Parameter(weight2, "w2", requires_grad=True)
self.matmul = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
def construct(self, x):
out = self.matmul(x, self.weight)
out = self.matmul2(out, self.weight2)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((4, 1), (1, 2))
strategy2 = ((4, 2), (2, 1))
strategy3 = ((8, 1), (8, 1))
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
weight = Tensor(np.ones([32, 64]), dtype=ms.float32)
weight2 = Tensor(np.ones([64, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
net = Net(strategy1, strategy2, weight, weight2)
net_with_loss = NetWithLoss(net, strategy3)
train_net = OneStepCell(net_with_loss)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
train_net.set_auto_parallel()
_executor.compile(train_net, x, b)