You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/probability/distribution/test_cauchy.py

232 lines
6.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.cauchy.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_cauchy_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Cauchy([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Cauchy(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Cauchy(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Cauchy(0., 1., seed='seed')
def test_scale():
with pytest.raises(ValueError):
msd.Cauchy(0., 0.)
with pytest.raises(ValueError):
msd.Cauchy(0., -1.)
def test_arguments():
"""
args passing during initialization.
"""
l = msd.Cauchy()
assert isinstance(l, msd.Distribution)
l = msd.Cauchy([3.0], [4.0], dtype=dtype.float32)
assert isinstance(l, msd.Distribution)
class CauchyProb(nn.Cell):
"""
Cauchy distribution: initialize with loc/scale.
"""
def __init__(self):
super(CauchyProb, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.cauchy.prob(value)
log_prob = self.cauchy.log_prob(value)
cdf = self.cauchy.cdf(value)
log_cdf = self.cauchy.log_cdf(value)
sf = self.cauchy.survival_function(value)
log_sf = self.cauchy.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_cauchy_prob():
"""
Test probability functions: passing value through construct.
"""
net = CauchyProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class CauchyProb1(nn.Cell):
"""
Cauchy distribution: initialize without loc/scale.
"""
def __init__(self):
super(CauchyProb1, self).__init__()
self.cauchy = msd.Cauchy()
def construct(self, value, mu, s):
prob = self.cauchy.prob(value, mu, s)
log_prob = self.cauchy.log_prob(value, mu, s)
cdf = self.cauchy.cdf(value, mu, s)
log_cdf = self.cauchy.log_cdf(value, mu, s)
sf = self.cauchy.survival_function(value, mu, s)
log_sf = self.cauchy.log_survival(value, mu, s)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_cauchy_prob1():
"""
Test probability functions: passing loc/scale, value through construct.
"""
net = CauchyProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)
class KL(nn.Cell):
"""
Test kl_loss and cross entropy.
"""
def __init__(self):
super(KL, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0)
self.cauchy1 = msd.Cauchy()
def construct(self, mu, s, mu_a, s_a):
kl = self.cauchy.kl_loss('Cauchy', mu, s)
kl1 = self.cauchy1.kl_loss('Cauchy', mu, s, mu_a, s_a)
cross_entropy = self.cauchy.cross_entropy('Cauchy', mu, s)
cross_entropy1 = self.cauchy.cross_entropy('Cauchy', mu, s, mu_a, s_a)
return kl + kl1 + cross_entropy + cross_entropy1
def test_kl_cross_entropy():
"""
Test kl_loss and cross_entropy.
"""
net = KL()
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
mu_a = Tensor([0.0], dtype=dtype.float32)
s_a = Tensor([1.0], dtype=dtype.float32)
ans = net(mu, s, mu_a, s_a)
assert isinstance(ans, Tensor)
class CauchyBasics(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(CauchyBasics, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mode = self.cauchy.mode()
entropy = self.cauchy.entropy()
return mode + entropy
class CauchyMean(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(CauchyMean, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32)
def construct(self):
return self.cauchy.mean()
class CauchyVar(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(CauchyVar, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32)
def construct(self):
return self.cauchy.var()
class CauchySd(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(CauchySd, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32)
def construct(self):
return self.cauchy.sd()
def test_bascis():
"""
Test mean/sd/var/mode/entropy functionality of Cauchy.
"""
net = CauchyBasics()
ans = net()
assert isinstance(ans, Tensor)
with pytest.raises(ValueError):
net = CauchyMean()
ans = net()
with pytest.raises(ValueError):
net = CauchyVar()
ans = net()
with pytest.raises(ValueError):
net = CauchySd()
ans = net()
class CauchyConstruct(nn.Cell):
"""
Cauchy distribution: going through construct.
"""
def __init__(self):
super(CauchyConstruct, self).__init__()
self.cauchy = msd.Cauchy(3.0, 4.0)
self.cauchy1 = msd.Cauchy()
def construct(self, value, mu, s):
prob = self.cauchy('prob', value)
prob1 = self.cauchy('prob', value, mu, s)
prob2 = self.cauchy1('prob', value, mu, s)
return prob + prob1 + prob2
def test_cauchy_construct():
"""
Test probability function going through construct.
"""
net = CauchyConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)