You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/probability/distribution/test_logistic.py

196 lines
5.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.logistic.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_logistic_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Logistic([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Logistic(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Logistic(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Logistic(0., 1., seed='seed')
def test_scale():
with pytest.raises(ValueError):
msd.Logistic(0., 0.)
with pytest.raises(ValueError):
msd.Logistic(0., -1.)
def test_arguments():
"""
args passing during initialization.
"""
l = msd.Logistic()
assert isinstance(l, msd.Distribution)
l = msd.Logistic([3.0], [4.0], dtype=dtype.float32)
assert isinstance(l, msd.Distribution)
class LogisticProb(nn.Cell):
"""
logistic distribution: initialize with loc/scale.
"""
def __init__(self):
super(LogisticProb, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.logistic.prob(value)
log_prob = self.logistic.log_prob(value)
cdf = self.logistic.cdf(value)
log_cdf = self.logistic.log_cdf(value)
sf = self.logistic.survival_function(value)
log_sf = self.logistic.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_logistic_prob():
"""
Test probability functions: passing value through construct.
"""
net = LogisticProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class LogisticProb1(nn.Cell):
"""
logistic distribution: initialize without loc/scale.
"""
def __init__(self):
super(LogisticProb1, self).__init__()
self.logistic = msd.Logistic()
def construct(self, value, mu, s):
prob = self.logistic.prob(value, mu, s)
log_prob = self.logistic.log_prob(value, mu, s)
cdf = self.logistic.cdf(value, mu, s)
log_cdf = self.logistic.log_cdf(value, mu, s)
sf = self.logistic.survival_function(value, mu, s)
log_sf = self.logistic.log_survival(value, mu, s)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_logistic_prob1():
"""
Test probability functions: passing loc/scale, value through construct.
"""
net = LogisticProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)
class KL(nn.Cell):
"""
Test kl_loss. Should raise NotImplementedError.
"""
def __init__(self):
super(KL, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
def construct(self, mu, s):
kl = self.logistic.kl_loss('Logistic', mu, s)
return kl
class Crossentropy(nn.Cell):
"""
Test cross entropy. Should raise NotImplementedError.
"""
def __init__(self):
super(Crossentropy, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
def construct(self, mu, s):
cross_entropy = self.logistic.cross_entropy('Logistic', mu, s)
return cross_entropy
class LogisticBasics(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(LogisticBasics, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.logistic.mean()
sd = self.logistic.sd()
mode = self.logistic.mode()
entropy = self.logistic.entropy()
return mean + sd + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of logistic.
"""
net = LogisticBasics()
ans = net()
assert isinstance(ans, Tensor)
mu = Tensor(1.0, dtype=dtype.float32)
s = Tensor(1.0, dtype=dtype.float32)
with pytest.raises(NotImplementedError):
kl = KL()
ans = kl(mu, s)
with pytest.raises(NotImplementedError):
crossentropy = Crossentropy()
ans = crossentropy(mu, s)
class LogisticConstruct(nn.Cell):
"""
logistic distribution: going through construct.
"""
def __init__(self):
super(LogisticConstruct, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
self.logistic1 = msd.Logistic()
def construct(self, value, mu, s):
prob = self.logistic('prob', value)
prob1 = self.logistic('prob', value, mu, s)
prob2 = self.logistic1('prob', value, mu, s)
return prob + prob1 + prob2
def test_logistic_construct():
"""
Test probability function going through construct.
"""
net = LogisticConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)