You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/probability/distribution/test_poisson.py

159 lines
4.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Poisson.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_arguments():
"""
Args passing during initialization.
"""
p = msd.Poisson()
assert isinstance(p, msd.Distribution)
p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(p, msd.Distribution)
def test_type():
with pytest.raises(TypeError):
msd.Poisson([0.1], dtype=dtype.bool_)
def test_name():
with pytest.raises(TypeError):
msd.Poisson([0.1], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Poisson([0.1], seed='seed')
def test_rate():
"""
Invalid rate.
"""
with pytest.raises(ValueError):
msd.Poisson([-0.1], dtype=dtype.float32)
with pytest.raises(ValueError):
msd.Poisson([0.0], dtype=dtype.float32)
def test_scalar():
with pytest.raises(TypeError):
msd.Poisson(0.1, seed='seed')
class PoissonProb(nn.Cell):
"""
Poisson distribution: initialize with rate.
"""
def __init__(self):
super(PoissonProb, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
def construct(self, value):
prob = self.p.prob(value)
log_prob = self.p.log_prob(value)
cdf = self.p.cdf(value)
log_cdf = self.p.log_cdf(value)
sf = self.p.survival_function(value)
log_sf = self.p.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob():
"""
Test probability functions: passing value through construct.
"""
net = PoissonProb()
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class PoissonProb1(nn.Cell):
"""
Poisson distribution: initialize without rate.
"""
def __init__(self):
super(PoissonProb1, self).__init__()
self.p = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p.prob(value, rate)
log_prob = self.p.log_prob(value, rate)
cdf = self.p.cdf(value, rate)
log_cdf = self.p.log_cdf(value, rate)
sf = self.p.survival_function(value, rate)
log_sf = self.p.log_survival(value, rate)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob1():
"""
Test probability functions: passing value/rate through construct.
"""
net = PoissonProb1()
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
rate = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, rate)
assert isinstance(ans, Tensor)
class PoissonBasics(nn.Cell):
"""
Test class: basic mean/sd/var/mode function.
"""
def __init__(self):
super(PoissonBasics, self).__init__()
self.p = msd.Poisson([2.3, 2.5], dtype=dtype.float32)
def construct(self):
mean = self.p.mean()
sd = self.p.sd()
var = self.p.var()
return mean + sd + var
def test_bascis():
"""
Test mean/sd/var/mode functionality of Poisson distribution.
"""
net = PoissonBasics()
ans = net()
assert isinstance(ans, Tensor)
class PoissonConstruct(nn.Cell):
"""
Poisson distribution: going through construct.
"""
def __init__(self):
super(PoissonConstruct, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
self.p1 = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p('prob', value)
prob1 = self.p('prob', value, rate)
prob2 = self.p1('prob', value, rate)
return prob + prob1 + prob2
def test_poisson_construct():
"""
Test probability function going through construct.
"""
net = PoissonConstruct()
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
probs = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)