You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/lite/posenet/README.md

403 lines
16 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# MindSpore Lite 端侧骨骼检测demoAndroid
本示例程序演示了如何在端侧利用MindSpore Lite API以及MindSpore Lite骨骼检测模型完成端侧推理对设备摄像头捕获的内容进行检测并在App图像预览界面中显示连续目标检测结果。
## 运行依赖
- Android Studio >= 3.2 (推荐4.0以上版本)
## 构建与运行
1. 在Android Studio中加载本示例源码。
![start_home](images/home.png)
启动Android Studio后点击`File->Settings->System Settings->Android SDK`,勾选相应的`SDK Tools`。如下图所示,勾选后,点击`OK`Android Studio即可自动安装SDK。
![start_sdk](images/sdk_management.jpg)
> Android SDK Tools为默认安装项取消`Hide Obsolete Packages`选框之后可看到。
>
> 使用过程中若出现问题可参考第4项解决。
2. 连接Android设备运行该应用程序。
通过USB连接Android手机。待成功识别到设备后点击`Run 'app'`即可在您的手机上运行本示例项目。
> 编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项编译过程需做耐心等待。
>
> Android Studio连接设备调试操作可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
>
> 手机需开启“USB调试模式”Android Studio 才能识别到手机。 华为手机一般在设置->系统和更新->开发人员选项->USB调试中开始“USB调试模型”。
![run_app](images/run_app.PNG)
3. 在Android设备上点击“继续安装”安装完即可查看到设备摄像头捕获的内容和推理结果。
![install](images/install.jpg)
如下图所示,识别出的概率最高的物体是植物。
![result](images/app_result.jpg)
4. Demo部署问题解决方案。
4.1 NDK、CMake、JDK等工具问题
如果Android Studio内安装的工具出现无法识别等问题可重新从相应官网下载和安装并配置路径。
- NDK >= 21.3 [NDK](https://developer.android.google.cn/ndk/downloads?hl=zh-cn)
- CMake >= 3.10.2 [CMake](https://cmake.org/download)
- Android SDK >= 26 [SDK](https://developer.microsoft.com/zh-cn/windows/downloads/windows-10-sdk/)
- JDK >= 1.8 [JDK](https://www.oracle.com/cn/java/technologies/javase/javase-jdk8-downloads.html)
![project_structure](images/project_structure.png)
4.2 NDK版本不匹配问题
打开`Android SDK`,点击`Show Package Details`根据报错信息选择安装合适的NDK版本。
![NDK_version](images/NDK_version.jpg)
4.3 Android Studio版本问题
在`工具栏-help-Checkout for Updates`中更新Android Studio版本。
4.4 Gradle下依赖项安装过慢问题
如图所示, 打开Demo根目录下`build.gradle`文件,加入华为镜像源地址:`maven {url 'https://developer.huawei.com/repo/'}`修改classpath为4.0.0,点击`sync`进行同步。下载完成后将classpath版本复原再次进行同步。
![maven](images/maven.jpg)
## 示例程序详细说明
骨骼检测Android示例程序通过Android Camera 2 API实现摄像头获取图像帧以及相应的图像处理等功能在[Runtime](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/runtime.html)中完成模型推理的过程。
### 示例程序结构
```text
├── app
│   ├── build.gradle # 其他Android配置文件
│   ├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
│   ├── proguard-rules.pro
│   └── src
│   ├── main
│   │   ├── AndroidManifest.xml # Android配置文件
│   │   ├── java # java层应用代码
│   │   │   └── com
│   │   │   └── mindspore
│   │   │   └── posenetdemo # 图像处理及推理流程实现
│   │   │   ├── CameraDataDealListener.java
│   │   │   ├── ImageUtils.java
│   │   │   ├── MainActivity.java
│   │   │   ├── PoseNetFragment.java
│   │   │   ├── Posenet.java #
│   │   │   └── TestActivity.java
│   │   └── res # 存放Android相关的资源文件
│   └── test
└── ...
```
### 下载及部署模型文件
从MindSpore Model Hub中下载模型文件本示例程序中使用的目标检测模型文件为`posenet_model.ms`,同样通过`download.gradle`脚本在APP构建时自动下载并放置在`app/src/main/assets`工程目录下。
> 若下载失败请手动下载模型文件posenet_model.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/posenet_lite/posenet_model.ms)。
### 编写端侧推理代码
在骨骼检测demo中使用Java API实现端测推理。相比于C++ APIJava API可以直接在Java Class中调用无需实现JNI层的相关代码具有更好的便捷性。
- 本实例通过识别鼻子眼睛等身体特征、获取身体特征位置、计算结果的置信分数,来实现骨骼检测的目的。
```java
public enum BodyPart {
NOSE,
LEFT_EYE,
RIGHT_EYE,
LEFT_EAR,
RIGHT_EAR,
LEFT_SHOULDER,
RIGHT_SHOULDER,
LEFT_ELBOW,
RIGHT_ELBOW,
LEFT_WRIST,
RIGHT_WRIST,
LEFT_HIP,
RIGHT_HIP,
LEFT_KNEE,
RIGHT_KNEE,
LEFT_ANKLE,
RIGHT_ANKLE
}
public class Position {
int x;
int y;
}
public class KeyPoint {
BodyPart bodyPart = BodyPart.NOSE;
Position position = new Position();
float score = 0.0f;
}
public class Person {
List<KeyPoint> keyPoints;
float score = 0.0f;
}
```
骨骼检测demo推理代码流程如下完整代码请参见`src/main/java/com/mindspore/posenetdemo/Posenet.java`。
1. 加载MindSpore Lite模型文件构建上下文、会话以及用于推理的计算图。
- 加载模型从文件系统中读取MindSpore Lite模型并进行模型解析。
```java
// Load the .ms model.
model = new Model();
if (!model.loadModel(mContext, "posenet_model.ms")) {
Log.e("MS_LITE", "Load Model failed");
return false;
}
```
- 创建配置上下文:创建配置上下文`MSConfig`,保存会话所需的一些基本配置参数,用于指导图编译和图执行。
```java
// Create and init config.
msConfig = new MSConfig();
if (!msConfig.init(DeviceType.DT_CPU, NUM_THREADS, CpuBindMode.MID_CPU)) {
Log.e("MS_LITE", "Init context failed");
return false;
}
```
- 创建会话:创建`LiteSession`,并调用`init`方法将上一步得到`MSConfig`配置到会话中。
```java
// Create the MindSpore lite session.
session = new LiteSession();
if (!session.init(msConfig)) {
Log.e("MS_LITE", "Create session failed");
msConfig.free();
return false;
}
msConfig.free();
```
- 加载模型文件并构建用于推理的计算图
```java
// Complile graph.
if (!session.compileGraph(model)) {
Log.e("MS_LITE", "Compile graph failed");
model.freeBuffer();
return false;
}
// Note: when use model.freeBuffer(), the model can not be complile graph again.
model.freeBuffer();
```
2. 输入数据: Java目前支持`byte[]`或者`ByteBuffer`两种类型的数据设置输入Tensor的数据。
- 在输入数据之前需要对存储图像信息的Bitmap进行解读分析与转换。
```java
/**
* Scale the image to a byteBuffer of [-1,1] values.
*/
private ByteBuffer initInputArray(Bitmap bitmap) {
final int bytesPerChannel = 4;
final int inputChannels = 3;
final int batchSize = 1;
ByteBuffer inputBuffer = ByteBuffer.allocateDirect(
batchSize * bytesPerChannel * bitmap.getHeight() * bitmap.getWidth() * inputChannels
);
inputBuffer.order(ByteOrder.nativeOrder());
inputBuffer.rewind();
final float mean = 128.0f;
final float std = 128.0f;
int[] intValues = new int[bitmap.getWidth() * bitmap.getHeight()];
bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());
int pixel = 0;
for (int y = 0; y < bitmap.getHeight(); y++) {
for (int x = 0; x < bitmap.getWidth(); x++) {
int value = intValues[pixel++];
inputBuffer.putFloat(((float) (value >> 16 & 0xFF) - mean) / std);
inputBuffer.putFloat(((float) (value >> 8 & 0xFF) - mean) / std);
inputBuffer.putFloat(((float) (value & 0xFF) - mean) / std);
}
}
return inputBuffer;
}
```
- 通过`ByteBuffer`输入数据。
```java
long estimationStartTimeNanos = SystemClock.elapsedRealtimeNanos();
ByteBuffer inputArray = this.initInputArray(bitmap);
List<MSTensor> inputs = session.getInputs();
if (inputs.size() != 1) {
return null;
}
Log.i("posenet", String.format("Scaling to [-1,1] took %.2f ms",
1.0f * (SystemClock.elapsedRealtimeNanos() - estimationStartTimeNanos) / 1_000_000));
MSTensor inTensor = inputs.get(0);
inTensor.setData(inputArray);
long inferenceStartTimeNanos = SystemClock.elapsedRealtimeNanos();
```
3. 对输入Tensor按照模型进行推理获取输出Tensor并进行后处理。
- 使用`runGraph`进行模型推理。
```java
// Run graph to infer results.
if (!session.runGraph()) {
Log.e("MS_LITE", "Run graph failed");
return null;
}
lastInferenceTimeNanos = SystemClock.elapsedRealtimeNanos() - inferenceStartTimeNanos;
Log.i(
"posenet",
String.format("Interpreter took %.2f ms", 1.0f * lastInferenceTimeNanos / 1_000_000)
);
```
- 通过输出Tensor得到推理结果。
```java
// Get output tensor values.
List<MSTensor> heatmaps_list = session.getOutputsByNodeName("Conv2D-27");
if (heatmaps_list == null) {
return null;
}
MSTensor heatmaps_tensors = heatmaps_list.get(0);
float[] heatmaps_results = heatmaps_tensors.getFloatData();
int[] heatmapsShape = heatmaps_tensors.getShape(); //1, 9, 9 ,17
float[][][][] heatmaps = new float[heatmapsShape[0]][][][];
for (int x = 0; x < heatmapsShape[0]; x++) { // heatmapsShape[0] =1
float[][][] arrayThree = new float[heatmapsShape[1]][][];
for (int y = 0; y < heatmapsShape[1]; y++) { // heatmapsShape[1] = 9
float[][] arrayTwo = new float[heatmapsShape[2]][];
for (int z = 0; z < heatmapsShape[2]; z++) { //heatmapsShape[2] = 9
float[] arrayOne = new float[heatmapsShape[3]]; //heatmapsShape[3] = 17
for (int i = 0; i < heatmapsShape[3]; i++) {
int n = i + z * heatmapsShape[3] + y * heatmapsShape[2] * heatmapsShape[3] + x * heatmapsShape[1] * heatmapsShape[2] * heatmapsShape[3];
arrayOne[i] = heatmaps_results[n]; //1*9*9*17 ??
}
arrayTwo[z] = arrayOne;
}
arrayThree[y] = arrayTwo;
}
heatmaps[x] = arrayThree;
}
List<MSTensor> offsets_list = session.getOutputsByNodeName("Conv2D-28");
if (offsets_list == null) {
return null;
}
MSTensor offsets_tensors = offsets_list.get(0);
float[] offsets_results = offsets_tensors.getFloatData();
int[] offsetsShapes = offsets_tensors.getShape();
float[][][][] offsets = new float[offsetsShapes[0]][][][];
for (int x = 0; x < offsetsShapes[0]; x++) {
float[][][] offsets_arrayThree = new float[offsetsShapes[1]][][];
for (int y = 0; y < offsetsShapes[1]; y++) {
float[][] offsets_arrayTwo = new float[offsetsShapes[2]][];
for (int z = 0; z < offsetsShapes[2]; z++) {
float[] offsets_arrayOne = new float[offsetsShapes[3]];
for (int i = 0; i < offsetsShapes[3]; i++) {
int n = i + z * offsetsShapes[3] + y * offsetsShapes[2] * offsetsShapes[3] + x * offsetsShapes[1] * offsetsShapes[2] * offsetsShapes[3];
offsets_arrayOne[i] = offsets_results[n];
}
offsets_arrayTwo[z] = offsets_arrayOne;
}
offsets_arrayThree[y] = offsets_arrayTwo;
}
offsets[x] = offsets_arrayThree;
}
```
- 对输出节点的数据进行处理,得到骨骼检测demo的返回值`person`,实现功能。
`Conv2D-27`中,`heatmaps`存储`height`、`weight`、`numKeypoints`三种参数,可用于求出`keypointPosition`位置信息。
`Conv2D-28`中,`offset`代表位置坐标的偏移量,与`keypointPosition`结合可获取`confidenceScores`置信分数,用于判断模型推理结果。
通过`keypointPosition`与`confidenceScores`,获取`person.keyPoints`和`person.score`,得到模型的返回值`person`。
```java
int height = ((Object[]) heatmaps[0]).length; //9
int width = ((Object[]) heatmaps[0][0]).length; //9
int numKeypoints = heatmaps[0][0][0].length; //17
// Finds the (row, col) locations of where the keypoints are most likely to be.
Pair[] keypointPositions = new Pair[numKeypoints];
for (int i = 0; i < numKeypoints; i++) {
keypointPositions[i] = new Pair(0, 0);
}
for (int keypoint = 0; keypoint < numKeypoints; keypoint++) {
float maxVal = heatmaps[0][0][0][keypoint];
int maxRow = 0;
int maxCol = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
if (heatmaps[0][row][col][keypoint] > maxVal) {
maxVal = heatmaps[0][row][col][keypoint];
maxRow = row;
maxCol = col;
}
}
}
keypointPositions[keypoint] = new Pair(maxRow, maxCol);
}
// Calculating the x and y coordinates of the keypoints with offset adjustment.
int[] xCoords = new int[numKeypoints];
int[] yCoords = new int[numKeypoints];
float[] confidenceScores = new float[numKeypoints];
for (int i = 0; i < keypointPositions.length; i++) {
Pair position = keypointPositions[i];
int positionY = (int) position.first;
int positionX = (int) position.second;
yCoords[i] = (int) ((float) positionY / (float) (height - 1) * bitmap.getHeight() + offsets[0][positionY][positionX][i]);
xCoords[i] = (int) ((float) positionX / (float) (width - 1) * bitmap.getWidth() + offsets[0][positionY][positionX][i + numKeypoints]);
confidenceScores[i] = sigmoid(heatmaps[0][positionY][positionX][i]);
}
Person person = new Person();
KeyPoint[] keypointList = new KeyPoint[numKeypoints];
for (int i = 0; i < numKeypoints; i++) {
keypointList[i] = new KeyPoint();
}
float totalScore = 0.0f;
for (int i = 0; i < keypointList.length; i++) {
keypointList[i].position.x = xCoords[i];
keypointList[i].position.y = yCoords[i];
keypointList[i].score = confidenceScores[i];
totalScore += confidenceScores[i];
}
person.keyPoints = Arrays.asList(keypointList);
person.score = totalScore / numKeypoints;
return person;
```