12 KiB
MindSpore Lite 端侧场景检测demo(Android)
本示例程序演示了如何在端侧利用MindSpore Lite C++ API(Android JNI)以及MindSpore Lite 场景检测模型完成端侧推理,对设备摄像头捕获的内容进行检测,并在App图像预览界面中显示连续目标检测结果。
运行依赖
- Android Studio >= 3.2 (推荐4.0以上版本)
- NDK 21.3
- CMake 3.10
- Android SDK >= 26
构建与运行
-
在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。
启动Android Studio后,点击
File->Settings->System Settings->Android SDK
,勾选相应的SDK。如下图所示,勾选后,点击OK
,Android Studio即可自动安装SDK。使用过程中若出现Android Studio配置问题,可参考下表解决:
报错 解决方案 1 Gradle sync failed: NDK not configured. 在local.properties中指定安装的ndk目录:ndk.dir={ndk的安装目录} 2 Requested NDK version did not match the version requested by ndk.dir 可手动下载相应的NDK版本,并在Project Structure - Android NDK location设置中指定SDK的位置(可参考下图完成) 3 This version of Android Studio cannot open this project, please retry with Android Studio or newer. 在工具栏-help-Checkout for Updates中更新版本 4 SSL peer shut down incorrectly 重新构建 -
连接Android设备,运行场景检测示例应用程序。
通过USB连接Android设备调试,点击
Run 'app'
即可在你的设备上运行本示例项目。编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
Android Studio连接设备调试操作,可参考https://developer.android.com/studio/run/device?hl=zh-cn。
-
在Android设备上,点击“继续安装”。完成之后即可在手机上体验场景检测功能。
示例程序详细说明
端侧场景检测Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理(针对推理结果画框)等功能;JNI层在Runtime中完成模型推理的过程。
此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
示例程序结构
app
|
├── libs # 存放demo jni层编译出的库文件
│ └── arm64-v8a
│ │── libmlkit-label-MS.so #
|
├── src/main
│ ├── assets # 资源文件
| | └── mobilenetv2.ms # 存放模型文件
│ |
│ ├── cpp # 模型加载和预测主要逻辑封装类
| | ├── mindspore-lite-x.x.x-mindata-arm64-cpu # minspore源码编译出的调用包,包含demo jni层依赖的库文件及相关的头文件
| | | └── ...
│ | |
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
│ ├── java # java层应用代码
│ │ └── com.huawei.himindsporedemo
│ │ ├── help # 图像处理及MindSpore JNI调用相关实现
│ │ │ └── ...
│ │ └── obejctdetect # 开启摄像头及绘制相关实现
│ │ └── ...
│ │
│ ├── res # 存放Android相关的资源文件
│ └── AndroidManifest.xml # Android配置文件
│
├── CMakeLists.txt # cmake编译入口文件
│
├── build.gradle # 其他Android配置文件
├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
└── ...
配置MindSpore Lite依赖项
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite源码编译生成mindspore-lite-{version}-minddata-{os}-{device}.tar.gz
库文件包并解压缩(包含libmindspore-lite.so
库文件和相关头文件),在本例中需使用生成带图像预处理模块的编译命令。
version:输出件版本号,与所编译的分支代码对应的版本一致。
device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。
os:输出件应部署的操作系统。
本示例中,build过程由download.gradle文件自动下载MindSpore Lite 版本文件,并放置在app/src/main/cpp/
目录下。
若自动下载失败,请手动下载相关库文件,解压并放在对应位置:
mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz 下载链接
在app的build.gradle
文件中配置CMake编译支持,以及arm64-v8a
的编译支持,如下所示:
android{
defaultConfig{
externalNativeBuild{
cmake{
arguments "-DANDROID_STL=c++_shared"
}
}
ndk{
abiFilters 'arm64-v8a'
}
}
}
在app/CMakeLists.txt
文件中建立.so
库文件链接,如下所示。
# Set MindSpore Lite Dependencies.
set(MINDSPORELITE_VERSION mindspore-lite-1.0.1-runtime-arm64-cpu)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
add_library(mindspore-lite SHARED IMPORTED )
add_library(minddata-lite SHARED IMPORTED )
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
# Link target library.
target_link_libraries(
...
mindspore-lite
minddata-lite
...
)
下载及部署模型文件
从MindSpore Model Hub中下载模型文件,本示例程序中使用的场景检测模型文件为mobilenetv2.ms
,同样通过download.gradle
脚本在APP构建时自动下载,并放置在app/src/main/assets
工程目录下。
若下载失败请手动下载模型文件,mobilenetv2.ms 下载链接。
编写端侧推理代码
在JNI层调用MindSpore Lite C++ API实现端测推理。
推理代码流程如下,完整代码请参见src/cpp/MindSporeNetnative.cpp
。
-
加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
-
加载模型文件
jlong bufferLen = env->GetDirectBufferCapacity(model_buffer); if (0 == bufferLen) { MS_PRINT("error, bufferLen is 0!"); return (jlong) nullptr; } char *modelBuffer = CreateLocalModelBuffer(env, model_buffer); if (modelBuffer == nullptr) { MS_PRINT("modelBuffer create failed!"); return (jlong) nullptr; }
-
创建会话
void **labelEnv = new void *; MSNetWork *labelNet = new MSNetWork; *labelEnv = labelNet; mindspore::lite::Context *context = new mindspore::lite::Context; context->thread_num_ = num_thread; context->device_list_[0].device_info_.cpu_device_info_.cpu_bind_mode_ = mindspore::lite::NO_BIND; context->device_list_[0].device_info_.cpu_device_info_.enable_float16_ = false; context->device_list_[0].device_type_ = mindspore::lite::DT_CPU; labelNet->CreateSessionMS(modelBuffer, bufferLen, context); delete context;
-
加载模型文件并构建用于推理的计算图
void MSNetWork::CreateSessionMS(char *modelBuffer, size_t bufferLen, mindspore::lite::Context *ctx) { session_ = mindspore::session::LiteSession::CreateSession(ctx); if (session_ == nullptr) { MS_PRINT("Create Session failed."); return; } // Compile model. model_ = mindspore::lite::Model::Import(modelBuffer, bufferLen); if (model_ == nullptr) { ReleaseNets(); MS_PRINT("Import model failed."); return; } int ret = session_->CompileGraph(model_); if (ret != mindspore::lite::RET_OK) { ReleaseNets(); MS_PRINT("CompileGraph failed."); return; } }
-
-
将输入图片转换为传入MindSpore模型的Tensor格式。
// Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing LiteMat lite_mat_bgr,lite_norm_mat_cut; if (!BitmapToLiteMat(env, srcBitmap, lite_mat_bgr)){ MS_PRINT("BitmapToLiteMat error"); return NULL; } int srcImageWidth = lite_mat_bgr.width_; int srcImageHeight = lite_mat_bgr.height_; if(!PreProcessImageData(lite_mat_bgr, lite_norm_mat_cut)){ MS_PRINT("PreProcessImageData error"); return NULL; } ImgDims inputDims; inputDims.channel =lite_norm_mat_cut.channel_; inputDims.width = lite_norm_mat_cut.width_; inputDims.height = lite_norm_mat_cut.height_; // Get the mindsore inference environment which created in loadModel(). void **labelEnv = reinterpret_cast<void **>(netEnv); if (labelEnv == nullptr) { MS_PRINT("MindSpore error, labelEnv is a nullptr."); return NULL; } MSNetWork *labelNet = static_cast<MSNetWork *>(*labelEnv); auto mSession = labelNet->session; if (mSession == nullptr) { MS_PRINT("MindSpore error, Session is a nullptr."); return NULL; } MS_PRINT("MindSpore get session."); auto msInputs = mSession->GetInputs(); auto inTensor = msInputs.front(); float *dataHWC = reinterpret_cast<float *>(lite_norm_mat_cut.data_ptr_); // copy input Tensor memcpy(inTensor->MutableData(), dataHWC, inputDims.channel * inputDims.width * inputDims.height * sizeof(float)); delete[] (dataHWC);
-
对输入Tensor按照模型进行推理,获取输出Tensor。
-
图执行,端测推理。
// After the model and image tensor data is loaded, run inference. auto status = mSession->RunGraph(); if (status != mindspore::lite::RET_OK) { MS_PRINT("MindSpore run net error."); return NULL; }
-
获取输出数据。
/** * Get the mindspore inference results. * Return the map of output node name and MindSpore Lite MSTensor. */ auto names = mSession->GetOutputTensorNames(); std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs; for (const auto &name : names) { auto temp_dat = mSession->GetOutputByTensorName(name); msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *>{name, temp_dat}); }
-