You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
1.8 KiB
50 lines
1.8 KiB
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, axis=0):
|
|
super(Net, self).__init__()
|
|
self.unique = P.Unique()
|
|
self.reshape = P.Reshape()
|
|
self.concat = P.Concat(axis=axis)
|
|
|
|
def construct(self, x1, x2):
|
|
out1_unique, _ = self.unique(x1)
|
|
out2_unique, _ = self.unique(x2)
|
|
out1_shape = self.reshape(out1_unique, (1, -1, 2))
|
|
out2_shape = self.reshape(out2_unique, (1, -1, 2))
|
|
return self.concat((out1_shape, out2_shape))
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_dynamic_concat_cpu():
|
|
x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32)
|
|
x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32)
|
|
net = Net(axis=1)
|
|
output = net(x1, x2)
|
|
expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]])
|
|
assert (output.asnumpy() == expect).all()
|