You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/lstm/README.md

103 lines
3.0 KiB

# LSTM Example
## Description
This example is for LSTM model training and evaluation.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the dataset aclImdb_v1.
> Unzip the aclImdb_v1 dataset to any path you want and the folder structure should be as follows:
> ```
> .
> ├── train # train dataset
> └── test # infer dataset
> ```
- Download the GloVe file.
> Unzip the glove.6B.zip to any path you want and the folder structure should be as follows:
> ```
> .
> ├── glove.6B.100d.txt
> ├── glove.6B.200d.txt
> ├── glove.6B.300d.txt # we will use this one later.
> └── glove.6B.50d.txt
> ```
> Adding a new line at the beginning of the file which named `glove.6B.300d.txt`.
> It means reading a total of 400,000 words, each represented by a 300-latitude word vector.
> ```
> 400000 300
> ```
## Running the Example
### Training
```
python train.py --preprocess=true --aclimdb_path=your_imdb_path --glove_path=your_glove_path > out.train.log 2>&1 &
```
The python command above will run in the background, you can view the results through the file `out.train.log`.
After training, you'll get some checkpoint files under the script folder by default.
You will get the loss value as following:
```
# grep "loss is " out.train.log
epoch: 1 step: 390, loss is 0.6003723
epcoh: 2 step: 390, loss is 0.35312173
...
```
### Evaluation
```
python eval.py --ckpt_path=./lstm-20-390.ckpt > out.eval.log 2>&1 &
```
The above python command will run in the background, you can view the results through the file `out.eval.log`.
You will get the accuracy as following:
```
# grep "acc" out.eval.log
result: {'acc': 0.83}
```
## Usage:
### Training
```
usage: train.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINED]
[--device_target {GPU,CPU}]
parameters/options:
--preprocess whether to preprocess data.
--aclimdb_path path where the dataset is stored.
--glove_path path where the GloVe is stored.
--preprocess_path path where the pre-process data is stored.
--ckpt_path the path to save the checkpoint file.
--pre_trained the pretrained checkpoint file path.
--device_target the target device to run, support "GPU", "CPU".
```
### Evaluation
```
usage: eval.py [--preprocess {true,false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--device_target {GPU,CPU}]
parameters/options:
--preprocess whether to preprocess data.
--aclimdb_path path where the dataset is stored.
--glove_path path where the GloVe is stored.
--preprocess_path path where the pre-process data is stored.
--ckpt_path the checkpoint file path used to evaluate model.
--device_target the target device to run, support "GPU", "CPU".
```