|
|
# Contents
|
|
|
|
|
|
- [ResNeXt50 Description](#resnext50-description)
|
|
|
- [Model Architecture](#model-architecture)
|
|
|
- [Dataset](#dataset)
|
|
|
- [Features](#features)
|
|
|
- [Mixed Precision](#mixed-precision)
|
|
|
- [Environment Requirements](#environment-requirements)
|
|
|
- [Quick Start](#quick-start)
|
|
|
- [Script Description](#script-description)
|
|
|
- [Script and Sample Code](#script-and-sample-code)
|
|
|
- [Script Parameters](#script-parameters)
|
|
|
- [Training Process](#training-process)
|
|
|
- [Evaluation Process](#evaluation-process)
|
|
|
- [Model Description](#model-description)
|
|
|
- [Performance](#performance)
|
|
|
- [Training Performance](#evaluation-performance)
|
|
|
- [Inference Performance](#evaluation-performance)
|
|
|
- [Description of Random Situation](#description-of-random-situation)
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
|
|
|
|
|
# [ResNeXt50 Description](#contents)
|
|
|
|
|
|
ResNeXt is a simple, highly modularized network architecture for image classification. It designs results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set in ResNeXt. This strategy exposes a new dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width.
|
|
|
|
|
|
[Paper](https://arxiv.org/abs/1611.05431): Xie S, Girshick R, Dollár, Piotr, et al. Aggregated Residual Transformations for Deep Neural Networks. 2016.
|
|
|
|
|
|
# [Model architecture](#contents)
|
|
|
|
|
|
The overall network architecture of ResNeXt is show below:
|
|
|
|
|
|
[Link](https://arxiv.org/abs/1611.05431)
|
|
|
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
Dataset used: [imagenet](http://www.image-net.org/)
|
|
|
|
|
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
|
|
- Train: 120G, 1.2W images
|
|
|
- Test: 5G, 50000 images
|
|
|
- Data format: RGB images.
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
|
|
|
# [Features](#contents)
|
|
|
|
|
|
## [Mixed Precision](#contents)
|
|
|
|
|
|
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
|
|
|
|
|
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
|
|
|
|
|
# [Environment Requirements](#contents)
|
|
|
|
|
|
- Hardware(Ascend/GPU)
|
|
|
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
|
|
- Framework
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
|
|
- For more information, please check the resources below:
|
|
|
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
|
|
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
|
|
|
|
|
# [Script description](#contents)
|
|
|
|
|
|
## [Script and sample code](#contents)
|
|
|
|
|
|
```python
|
|
|
.
|
|
|
└─resnext50
|
|
|
├─README.md
|
|
|
├─scripts
|
|
|
├─run_standalone_train.sh # launch standalone training for ascend(1p)
|
|
|
├─run_distribute_train.sh # launch distributed training for ascend(8p)
|
|
|
├─run_standalone_train_for_gpu.sh # launch standalone training for gpu(1p)
|
|
|
├─run_distribute_train_for_gpu.sh # launch distributed training for gpu(8p)
|
|
|
└─run_eval.sh # launch evaluating
|
|
|
├─src
|
|
|
├─backbone
|
|
|
├─_init_.py # initalize
|
|
|
├─resnet.py # resnext50 backbone
|
|
|
├─utils
|
|
|
├─_init_.py # initalize
|
|
|
├─cunstom_op.py # network operation
|
|
|
├─logging.py # print log
|
|
|
├─optimizers_init_.py # get parameters
|
|
|
├─sampler.py # distributed sampler
|
|
|
├─var_init_.py # calculate gain value
|
|
|
├─_init_.py # initalize
|
|
|
├─config.py # parameter configuration
|
|
|
├─crossentropy.py # CrossEntropy loss function
|
|
|
├─dataset.py # data preprocessing
|
|
|
├─head.py # commom head
|
|
|
├─image_classification.py # get resnet
|
|
|
├─linear_warmup.py # linear warmup learning rate
|
|
|
├─warmup_cosine_annealing.py # learning rate each step
|
|
|
├─warmup_step_lr.py # warmup step learning rate
|
|
|
├─eval.py # eval net
|
|
|
└─train.py # train net
|
|
|
|
|
|
```
|
|
|
|
|
|
## [Script Parameters](#contents)
|
|
|
|
|
|
Parameters for both training and evaluating can be set in config.py.
|
|
|
|
|
|
```
|
|
|
"image_height": '224,224' # image size
|
|
|
"num_classes": 1000, # dataset class number
|
|
|
"per_batch_size": 128, # batch size of input tensor
|
|
|
"lr": 0.05, # base learning rate
|
|
|
"lr_scheduler": 'cosine_annealing', # learning rate mode
|
|
|
"lr_epochs": '30,60,90,120', # epoch of lr changing
|
|
|
"lr_gamma": 0.1, # decrease lr by a factor of exponential lr_scheduler
|
|
|
"eta_min": 0, # eta_min in cosine_annealing scheduler
|
|
|
"T_max": 150, # T-max in cosine_annealing scheduler
|
|
|
"max_epoch": 150, # max epoch num to train the model
|
|
|
"backbone": 'resnext50', # backbone metwork
|
|
|
"warmup_epochs" : 1, # warmup epoch
|
|
|
"weight_decay": 0.0001, # weight decay
|
|
|
"momentum": 0.9, # momentum
|
|
|
"is_dynamic_loss_scale": 0, # dynamic loss scale
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"label_smooth": 1, # label_smooth
|
|
|
"label_smooth_factor": 0.1, # label_smooth_factor
|
|
|
"ckpt_interval": 2000, # ckpt_interval
|
|
|
"ckpt_path": 'outputs/', # checkpoint save location
|
|
|
"is_save_on_master": 1,
|
|
|
"rank": 0, # local rank of distributed
|
|
|
"group_size": 1 # world size of distributed
|
|
|
```
|
|
|
|
|
|
## [Training Process](#contents)
|
|
|
|
|
|
#### Usage
|
|
|
|
|
|
You can start training by python script:
|
|
|
|
|
|
```
|
|
|
python train.py --data_dir ~/imagenet/train/ --platform Ascend --is_distributed 0
|
|
|
```
|
|
|
|
|
|
or shell stript:
|
|
|
|
|
|
```
|
|
|
Ascend:
|
|
|
# distribute training example(8p)
|
|
|
sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
|
|
# standalone training
|
|
|
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
|
|
GPU:
|
|
|
# distribute training example(8p)
|
|
|
sh run_distribute_train_for_gpu.sh DATA_PATH
|
|
|
# standalone training
|
|
|
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_PATH
|
|
|
```
|
|
|
|
|
|
#### Launch
|
|
|
|
|
|
```bash
|
|
|
# distributed training example(8p) for Ascend
|
|
|
sh scripts/run_distribute_train.sh RANK_TABLE_FILE /dataset/train
|
|
|
# standalone training example for Ascend
|
|
|
sh scripts/run_standalone_train.sh 0 /dataset/train
|
|
|
|
|
|
# distributed training example(8p) for GPU
|
|
|
sh scripts/run_distribute_train_for_gpu.sh /dataset/train
|
|
|
# standalone training example for GPU
|
|
|
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
|
|
|
```
|
|
|
|
|
|
You can find checkpoint file together with result in log.
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
|
|
### Usage
|
|
|
|
|
|
You can start training by python script:
|
|
|
|
|
|
```
|
|
|
python eval.py --data_dir ~/imagenet/val/ --platform Ascend --pretrained resnext.ckpt
|
|
|
```
|
|
|
|
|
|
or shell stript:
|
|
|
|
|
|
```
|
|
|
# Evaluation
|
|
|
sh run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH PLATFORM
|
|
|
```
|
|
|
PLATFORM is Ascend or GPU, default is Ascend.
|
|
|
|
|
|
#### Launch
|
|
|
|
|
|
```bash
|
|
|
# Evaluation with checkpoint
|
|
|
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt Ascend
|
|
|
```
|
|
|
|
|
|
#### Result
|
|
|
|
|
|
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
|
|
|
|
|
```
|
|
|
acc=78.16%(TOP1)
|
|
|
acc=93.88%(TOP5)
|
|
|
```
|
|
|
|
|
|
# [Model description](#contents)
|
|
|
|
|
|
## [Performance](#contents)
|
|
|
|
|
|
### Training Performance
|
|
|
|
|
|
| Parameters | ResNeXt50 | |
|
|
|
| -------------------------- | ---------------------------------------------------------- | ------------------------- |
|
|
|
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
|
|
|
| uploaded Date | 06/30/2020 | 07/23/2020 |
|
|
|
| MindSpore Version | 0.5.0 | 0.6.0 |
|
|
|
| Dataset | ImageNet | ImageNet |
|
|
|
| Training Parameters | src/config.py | src/config.py |
|
|
|
| Optimizer | Momentum | Momentum |
|
|
|
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
|
|
|
| Loss | 1.76592 | 1.8965 |
|
|
|
| Accuracy | 78%(TOP1) | 77.8%(TOP1) |
|
|
|
| Total time | 7.8 h 8ps | 21.5 h 8ps |
|
|
|
| Checkpoint for Fine tuning | 192 M(.ckpt file) | 192 M(.ckpt file) |
|
|
|
|
|
|
#### Inference Performance
|
|
|
|
|
|
| Parameters | | | |
|
|
|
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
|
|
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
|
|
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
|
|
|
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
|
|
|
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
|
|
| batch_size | 1 | 1 | 1 |
|
|
|
| outputs | probability | probability | probability |
|
|
|
| Accuracy | acc=78.16%(TOP1) | acc=78.05%(TOP1) | |
|
|
|
|
|
|
|
|
|
# [Description of Random Situation](#contents)
|
|
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|