You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/image_process_test.cc

882 lines
31 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
#include <fstream>
using namespace mindspore::dataset;
class MindDataImageProcess : public UT::Common {
public:
MindDataImageProcess() {}
void SetUp() {}
};
void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
int cv_h = cv_mat.rows;
int cv_w = cv_mat.cols;
int cv_c = cv_mat.channels();
int lite_h = lite_mat.height_;
int lite_w = lite_mat.width_;
int lite_c = lite_mat.channel_;
ASSERT_TRUE(cv_h == lite_h);
ASSERT_TRUE(cv_w == lite_w);
ASSERT_TRUE(cv_c == lite_c);
}
void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
bool ret;
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
return;
}
cv::Mat cv3CImageProcess(cv::Mat &image) {
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float meanG = 0.456;
float meanB = 0.406;
float varR = 0.229;
float varG = 0.224;
float varB = 0.225;
cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
cv::Scalar var = cv::Scalar(varR, varG, varB);
cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, testRGB) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
bool ret = false;
LiteMat lite_mat_rgb;
ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_);
}
TEST_F(MindDataImageProcess, testLoadByMemPtr) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
bool ret = false;
int width = rgba_mat.cols;
int height = rgba_mat.rows;
uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar));
for (int i = 0; i < height; i++) {
const uchar *current = rgba_mat.ptr<uchar>(i);
for (int j = 0; j < width; j++) {
p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0];
p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1];
p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2];
}
}
LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8);
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
LiteMat lite_norm_mat_cut;
ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
int pad_width = lite_norm_mat_cut.width_ + 20;
int pad_height = lite_norm_mat_cut.height_ + 20;
float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float));
LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32);
ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad);
free(p_rgb);
free(p_rgb_pad);
}
TEST_F(MindDataImageProcess, test3C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv3CImageProcess(image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_norm_mat_cut;
Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
CompareMat(cv_image, lite_norm_mat_cut);
}
bool ReadYUV(const char *filename, int w, int h, uint8_t **data) {
FILE *f = fopen(filename, "rb");
if (f == nullptr) {
return false;
}
fseek(f, 0, SEEK_END);
int size = ftell(f);
int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2);
if (size != expect_size) {
fclose(f);
return false;
}
fseek(f, 0, SEEK_SET);
*data = (uint8_t *)malloc(size);
size_t re = fread(*data, 1, size, f);
if (re != size) {
fclose(f);
return false;
}
fclose(f);
return true;
}
TEST_F(MindDataImageProcess, testNV21ToBGR) {
// ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv
const char *filename = "data/dataset/yuv/test_nv21.yuv";
int w = 1024;
int h = 800;
uint8_t *yuv_data = nullptr;
bool ret = ReadYUV(filename, w, h, &yuv_data);
ASSERT_TRUE(ret == true);
cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
cv::Mat rgbimage;
cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21);
LiteMat lite_mat_bgr;
ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
}
TEST_F(MindDataImageProcess, testNV12ToBGR) {
// ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv
const char *filename = "data/dataset/yuv/test_nv12.yuv";
int w = 1024;
int h = 800;
uint8_t *yuv_data = nullptr;
bool ret = ReadYUV(filename, w, h, &yuv_data);
ASSERT_TRUE(ret == true);
cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
cv::Mat rgbimage;
cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12);
LiteMat lite_mat_bgr;
ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
}
TEST_F(MindDataImageProcess, testExtractChannel) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat dst_image;
cv::extractChannel(src_image, dst_image, 2);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_B;
ret = ExtractChannel(lite_mat_bgr, lite_B, 0);
ASSERT_TRUE(ret == true);
LiteMat lite_R;
ret = ExtractChannel(lite_mat_bgr, lite_R, 2);
ASSERT_TRUE(ret == true);
cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_);
// cv::imwrite("./test_lite_r.jpg", dst_imageR);
}
TEST_F(MindDataImageProcess, testSplit) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
std::vector<cv::Mat> dst_images;
cv::split(src_image, dst_images);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
std::vector<LiteMat> lite_all;
ret = Split(lite_mat_bgr, lite_all);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(lite_all.size() == 3);
LiteMat lite_r = lite_all[2];
cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
}
TEST_F(MindDataImageProcess, testMerge) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
std::vector<cv::Mat> dst_images;
cv::split(src_image, dst_images);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
std::vector<LiteMat> lite_all;
ret = Split(lite_mat_bgr, lite_all);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(lite_all.size() == 3);
LiteMat lite_r = lite_all[2];
cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
LiteMat merge_mat;
EXPECT_TRUE(Merge(lite_all, merge_mat));
EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_);
EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_);
EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_);
}
void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
LiteMat lite_mat_resize;
int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_cut;
ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485};
std::vector<float> stds = {0.229};
ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
ASSERT_TRUE(ret == true);
return;
}
cv::Mat cv1CImageProcess(cv::Mat &image) {
cv::Mat gray_image;
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
cv::Mat resize_256_image;
cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float varR = 0.229;
cv::Scalar mean = cv::Scalar(meanR);
cv::Scalar var = cv::Scalar(varR);
cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test1C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv1CImageProcess(image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_norm_mat_cut;
Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
CompareMat(cv_image, lite_norm_mat_cut);
}
TEST_F(MindDataImageProcess, TestPadd) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 10;
int right = 20;
int top = 30;
int bottom = 40;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t*)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestPadZero) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t*)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
std::string benchmark = "data/dataset/testLite/default_boxes.bin";
BoxesConfig config;
config.img_shape = {300, 300};
config.num_default = {3, 6, 6, 6, 6, 6};
config.feature_size = {19, 10, 5, 3, 2, 1};
config.min_scale = 0.2;
config.max_scale = 0.95;
config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
config.steps = {16, 32, 64, 100, 150, 300};
config.prior_scaling = {0.1, 0.2};
int rows = 1917;
int cols = 4;
std::vector<double> benchmark_boxes(rows * cols);
std::ifstream in(benchmark, std::ios::in | std::ios::binary);
in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
in.close();
std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
EXPECT_EQ(default_boxes.size(), rows);
EXPECT_EQ(default_boxes[0].size(), cols);
double distance = 0.0f;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
}
}
distance = sqrt(distance);
EXPECT_LT(distance, 1e-5);
}
TEST_F(MindDataImageProcess, TestApplyNms) {
std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
ASSERT_TRUE(keep[0] == 3);
ASSERT_TRUE(keep[1] == 0);
ASSERT_TRUE(keep[2] == 1);
}
TEST_F(MindDataImageProcess, TestAffineInput) {
LiteMat src(3, 3);
LiteMat dst;
double M[6] = {1};
EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0)));
EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0)));
EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0)));
}
TEST_F(MindDataImageProcess, TestAffine) {
// The input matrix
// 0 0 1 0 0
// 0 0 1 0 0
// 2 2 3 2 2
// 0 0 1 0 0
// 0 0 1 0 0
size_t rows = 5;
size_t cols = 5;
LiteMat src(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
} else if (j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
} else {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
}
}
}
// Expect output matrix
// 0 0 2 0 0
// 0 0 2 0 0
// 1 1 3 1 1
// 0 0 2 0 0
// 0 0 2 0 0
LiteMat expect(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
} else if (j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
} else {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
}
}
}
double angle = 90.0f;
cv::Point2f center(rows / 2, cols / 2);
cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
double M[6];
for (size_t i = 0; i < 6; i++) {
M[i] = rotate_matrix.at<double>(i);
}
LiteMat dst;
EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0)));
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
}
}
}
TEST_F(MindDataImageProcess, TestSubtractUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 3;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 2;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 1;
}
LiteMat dst_uint8;
EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt8) {
const size_t cols = 4;
// Test int8
LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
for (size_t i = 0; i < cols; i++) {
static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 2;
static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = 3;
static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -1;
}
LiteMat dst_int8;
EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractUInt16) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 2;
static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 3;
static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 0;
}
LiteMat dst_uint16;
EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
for (size_t i = 0; i < cols; i++) {
static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 2;
static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = 3;
static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -1;
}
LiteMat dst_int16;
EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractUInt32) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 2;
static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 3;
static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 0;
}
LiteMat dst_uint32;
EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt32) {
const size_t cols = 4;
// Test int32
LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
for (size_t i = 0; i < cols; i++) {
static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2;
static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = 4;
static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -2;
}
LiteMat dst_int32;
EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 3.4;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = 5.7;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -2.3;
}
LiteMat dst_float;
EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 2;
}
LiteMat dst_uint8;
EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt8) {
const size_t cols = 4;
// Test int8
LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
for (size_t i = 0; i < cols; i++) {
static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 8;
static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = -4;
static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -2;
}
LiteMat dst_int8;
EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUInt16) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 40000;
static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 20000;
static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 2;
}
LiteMat dst_uint16;
EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
for (size_t i = 0; i < cols; i++) {
static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 30000;
static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = -3;
static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -10000;
}
LiteMat dst_int16;
EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUInt32) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 4000000000;
static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 4;
static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 1000000000;
}
LiteMat dst_uint32;
EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt32) {
const size_t cols = 4;
// Test int32
LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
for (size_t i = 0; i < cols; i++) {
static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2000000000;
static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = -2;
static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -1000000000;
}
LiteMat dst_int32;
EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 12.34f;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -6.17f;
}
LiteMat dst_float;
EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 32;
}
LiteMat dst_uint8;
EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyUInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_int16.data_ptr_)[i] = 60000;
static_cast<UINT16_C1 *>(src2_int16.data_ptr_)[i] = 2;
static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i] = 65535;
}
LiteMat dst_int16;
EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 30.0f;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -60.0f;
}
LiteMat dst_float;
EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}