|
|
# Contents
|
|
|
|
|
|
- [SqueezeNet Description](#squeezenet-description)
|
|
|
- [Model Architecture](#model-architecture)
|
|
|
- [Dataset](#dataset)
|
|
|
- [Features](#features)
|
|
|
- [Mixed Precision](#mixed-precision)
|
|
|
- [Environment Requirements](#environment-requirements)
|
|
|
- [Quick Start](#quick-start)
|
|
|
- [Script Description](#script-description)
|
|
|
- [Script and Sample Code](#script-and-sample-code)
|
|
|
- [Script Parameters](#script-parameters)
|
|
|
- [Training Process](#training-process)
|
|
|
- [Evaluation Process](#evaluation-process)
|
|
|
- [Model Description](#model-description)
|
|
|
- [Performance](#performance)
|
|
|
- [Evaluation Performance](#evaluation-performance)
|
|
|
- [Inference Performance](#inference-performance)
|
|
|
- [How to use](#how-to-use)
|
|
|
- [Inference](#inference)
|
|
|
- [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
|
|
|
- [Transfer Learning](#transfer-learning)
|
|
|
- [Description of Random Situation](#description-of-random-situation)
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
|
|
|
|
|
# [SqueezeNet Description](#contents)
|
|
|
|
|
|
SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet.
|
|
|
|
|
|
These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/ImageNet dataset in MindSpore. SqueezeNet_Residual adds residual operation on the basis of SqueezeNet, which can improve the accuracy of the model without increasing the amount of parameters.
|
|
|
|
|
|
[Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
|
|
|
|
|
|
# [Model Architecture](#contents)
|
|
|
|
|
|
SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels.
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|
|
|
|
|
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
|
|
- Train:146M,50,000 images
|
|
|
- Test:29M,10,000 images
|
|
|
- Data format:binary files
|
|
|
- Note:Data will be processed in src/dataset.py
|
|
|
|
|
|
Dataset used: [ImageNet2012](http://www.image-net.org/)
|
|
|
|
|
|
- Dataset size: 125G, 1250k colorful images in 1000 classes
|
|
|
- Train: 120G, 1200k images
|
|
|
- Test: 5G, 50k images
|
|
|
- Data format: RGB images.
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
# [Features](#contents)
|
|
|
|
|
|
## Mixed Precision
|
|
|
|
|
|
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
|
|
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
|
|
|
|
|
# [Environment Requirements](#contents)
|
|
|
|
|
|
- Hardware(Ascend/GPU)
|
|
|
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. Squeezenet training on GPU performs badly now, and it is still in research.
|
|
|
- Framework
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
|
|
- For more information, please check the resources below:
|
|
|
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
|
|
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
|
|
|
|
|
# [Quick Start](#contents)
|
|
|
|
|
|
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
|
|
|
|
|
- runing on Ascend
|
|
|
|
|
|
```bash
|
|
|
# distributed training
|
|
|
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# standalone training
|
|
|
Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# run evaluation example
|
|
|
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
|
|
```
|
|
|
|
|
|
- running on GPU
|
|
|
|
|
|
```bash
|
|
|
# distributed training example
|
|
|
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# standalone training example
|
|
|
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# run evaluation example
|
|
|
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
|
|
```
|
|
|
|
|
|
# [Script Description](#contents)
|
|
|
|
|
|
## [Script and Sample Code](#contents)
|
|
|
|
|
|
```shell
|
|
|
.
|
|
|
└── squeezenet
|
|
|
├── README.md
|
|
|
├── scripts
|
|
|
├── run_distribute_train.sh # launch ascend distributed training(8 pcs)
|
|
|
├── run_standalone_train.sh # launch ascend standalone training(1 pcs)
|
|
|
├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs)
|
|
|
├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs)
|
|
|
├── run_eval.sh # launch ascend evaluation
|
|
|
└── run_eval_gpu.sh # launch gpu evaluation
|
|
|
├── src
|
|
|
├── config.py # parameter configuration
|
|
|
├── dataset.py # data preprocessing
|
|
|
├── CrossEntropySmooth.py # loss definition for ImageNet dataset
|
|
|
├── lr_generator.py # generate learning rate for each step
|
|
|
└── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual
|
|
|
├── train.py # train net
|
|
|
├── eval.py # eval net
|
|
|
└── export.py # export checkpoint files into geir/onnx
|
|
|
```
|
|
|
|
|
|
## [Script Parameters](#contents)
|
|
|
|
|
|
Parameters for both training and evaluation can be set in config.py
|
|
|
|
|
|
- config for SqueezeNet, CIFAR-10 dataset
|
|
|
|
|
|
```py
|
|
|
"class_num": 10, # dataset class num
|
|
|
"batch_size": 32, # batch size of input tensor
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 1e-4, # weight decay
|
|
|
"epoch_size": 120, # only valid for taining, which is always 1 for inference
|
|
|
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
|
|
"save_checkpoint": True, # whether save checkpoint or not
|
|
|
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"save_checkpoint_path": "./", # path to save checkpoint
|
|
|
"warmup_epochs": 5, # number of warmup epoch
|
|
|
"lr_decay_mode": "poly" # decay mode for generating learning rate
|
|
|
"lr_init": 0, # initial learning rate
|
|
|
"lr_end": 0, # final learning rate
|
|
|
"lr_max": 0.01, # maximum learning rate
|
|
|
```
|
|
|
|
|
|
- config for SqueezeNet, ImageNet dataset
|
|
|
|
|
|
```py
|
|
|
"class_num": 1000, # dataset class num
|
|
|
"batch_size": 32, # batch size of input tensor
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 7e-5, # weight decay
|
|
|
"epoch_size": 200, # only valid for taining, which is always 1 for inference
|
|
|
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
|
|
"save_checkpoint": True, # whether save checkpoint or not
|
|
|
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"save_checkpoint_path": "./", # path to save checkpoint
|
|
|
"warmup_epochs": 0, # number of warmup epoch
|
|
|
"lr_decay_mode": "poly" # decay mode for generating learning rate
|
|
|
"use_label_smooth": True, # label smooth
|
|
|
"label_smooth_factor": 0.1, # label smooth factor
|
|
|
"lr_init": 0, # initial learning rate
|
|
|
"lr_end": 0, # final learning rate
|
|
|
"lr_max": 0.01, # maximum learning rate
|
|
|
```
|
|
|
|
|
|
- config for SqueezeNet_Residual, CIFAR-10 dataset
|
|
|
|
|
|
```py
|
|
|
"class_num": 10, # dataset class num
|
|
|
"batch_size": 32, # batch size of input tensor
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 1e-4, # weight decay
|
|
|
"epoch_size": 150, # only valid for taining, which is always 1 for inference
|
|
|
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
|
|
"save_checkpoint": True, # whether save checkpoint or not
|
|
|
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"save_checkpoint_path": "./", # path to save checkpoint
|
|
|
"warmup_epochs": 5, # number of warmup epoch
|
|
|
"lr_decay_mode": "linear" # decay mode for generating learning rate
|
|
|
"lr_init": 0, # initial learning rate
|
|
|
"lr_end": 0, # final learning rate
|
|
|
"lr_max": 0.01, # maximum learning rate
|
|
|
```
|
|
|
|
|
|
- config for SqueezeNet_Residual, ImageNet dataset
|
|
|
|
|
|
```py
|
|
|
"class_num": 1000, # dataset class num
|
|
|
"batch_size": 32, # batch size of input tensor
|
|
|
"loss_scale": 1024, # loss scale
|
|
|
"momentum": 0.9, # momentum
|
|
|
"weight_decay": 7e-5, # weight decay
|
|
|
"epoch_size": 300, # only valid for taining, which is always 1 for inference
|
|
|
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
|
|
|
"save_checkpoint": True, # whether save checkpoint or not
|
|
|
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
|
|
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
|
|
|
"save_checkpoint_path": "./", # path to save checkpoint
|
|
|
"warmup_epochs": 0, # number of warmup epoch
|
|
|
"lr_decay_mode": "cosine" # decay mode for generating learning rate
|
|
|
"use_label_smooth": True, # label smooth
|
|
|
"label_smooth_factor": 0.1, # label smooth factor
|
|
|
"lr_init": 0, # initial learning rate
|
|
|
"lr_end": 0, # final learning rate
|
|
|
"lr_max": 0.01, # maximum learning rate
|
|
|
```
|
|
|
|
|
|
For more configuration details, please refer the script `config.py`.
|
|
|
|
|
|
## [Training Process](#contents)
|
|
|
|
|
|
### Usage
|
|
|
|
|
|
#### Running on Ascend
|
|
|
|
|
|
```bash
|
|
|
# distributed training
|
|
|
Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# standalone training
|
|
|
Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
```
|
|
|
|
|
|
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
|
|
|
|
|
|
Please follow the instructions in the link [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
|
|
|
|
|
|
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
|
|
|
|
|
|
#### Running on GPU
|
|
|
|
|
|
```bash
|
|
|
# distributed training example
|
|
|
sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
|
|
|
# standalone training example
|
|
|
sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
|
|
```
|
|
|
|
|
|
### Result
|
|
|
|
|
|
- Training SqueezeNet with CIFAR-10 dataset
|
|
|
|
|
|
```shell
|
|
|
# standalone training result
|
|
|
epoch: 1 step 1562, loss is 1.7103254795074463
|
|
|
epoch: 2 step 1562, loss is 2.06101131439209
|
|
|
epoch: 3 step 1562, loss is 1.5594401359558105
|
|
|
epoch: 4 step 1562, loss is 1.4127278327941895
|
|
|
epoch: 5 step 1562, loss is 1.2140142917633057
|
|
|
...
|
|
|
```
|
|
|
|
|
|
- Training SqueezeNet with ImageNet dataset
|
|
|
|
|
|
```shell
|
|
|
# distribute training result(8 pcs)
|
|
|
epoch: 1 step 5004, loss is 5.716324329376221
|
|
|
epoch: 2 step 5004, loss is 5.350603103637695
|
|
|
epoch: 3 step 5004, loss is 4.580031394958496
|
|
|
epoch: 4 step 5004, loss is 4.784664154052734
|
|
|
epoch: 5 step 5004, loss is 4.136358261108398
|
|
|
...
|
|
|
```
|
|
|
|
|
|
- Training SqueezeNet_Residual with CIFAR-10 dataset
|
|
|
|
|
|
```shell
|
|
|
# standalone training result
|
|
|
epoch: 1 step 1562, loss is 2.298271656036377
|
|
|
epoch: 2 step 1562, loss is 2.2728664875030518
|
|
|
epoch: 3 step 1562, loss is 1.9493038654327393
|
|
|
epoch: 4 step 1562, loss is 1.7553865909576416
|
|
|
epoch: 5 step 1562, loss is 1.3370063304901123
|
|
|
...
|
|
|
```
|
|
|
|
|
|
- Training SqueezeNet_Residual with ImageNet dataset
|
|
|
|
|
|
```shell
|
|
|
# distribute training result(8 pcs)
|
|
|
epoch: 1 step 5004, loss is 6.802495002746582
|
|
|
epoch: 2 step 5004, loss is 6.386072158813477
|
|
|
epoch: 3 step 5004, loss is 5.513605117797852
|
|
|
epoch: 4 step 5004, loss is 5.312961101531982
|
|
|
epoch: 5 step 5004, loss is 4.888848304748535
|
|
|
...
|
|
|
```
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
|
|
### Usage
|
|
|
|
|
|
#### Running on Ascend
|
|
|
|
|
|
```shell
|
|
|
# evaluation
|
|
|
Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
|
|
```
|
|
|
|
|
|
```shell
|
|
|
# evaluation example
|
|
|
sh scripts/run_eval.sh squeezenet cifar10 0 ~/cifar-10-verify-bin train/squeezenet_cifar10-120_1562.ckpt
|
|
|
```
|
|
|
|
|
|
checkpoint can be produced in training process.
|
|
|
|
|
|
#### Running on GPU
|
|
|
|
|
|
```shell
|
|
|
sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
|
|
|
```
|
|
|
|
|
|
### Result
|
|
|
|
|
|
Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
|
|
|
|
|
|
- Evaluating SqueezeNet with CIFAR-10 dataset
|
|
|
|
|
|
```shell
|
|
|
result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513}
|
|
|
```
|
|
|
|
|
|
- Evaluating SqueezeNet with ImageNet dataset
|
|
|
|
|
|
```shell
|
|
|
result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317}
|
|
|
```
|
|
|
|
|
|
- Evaluating SqueezeNet_Residual with CIFAR-10 dataset
|
|
|
|
|
|
```shell
|
|
|
result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923}
|
|
|
```
|
|
|
|
|
|
- Evaluating SqueezeNet_Residual with ImageNet dataset
|
|
|
|
|
|
```shell
|
|
|
result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621}
|
|
|
```
|
|
|
|
|
|
# [Model Description](#contents)
|
|
|
|
|
|
## [Performance](#contents)
|
|
|
|
|
|
### Evaluation Performance
|
|
|
|
|
|
#### SqueezeNet on CIFAR-10
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
| Model Version | SqueezeNet |
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
|
|
| uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | CIFAR-10 |
|
|
|
| Training Parameters | epoch=120, steps=195, batch_size=32, lr=0.01 |
|
|
|
| Optimizer | Momentum |
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
| outputs | probability |
|
|
|
| Loss | 0.0496 |
|
|
|
| Speed(Ascend) | 1pc: 16.7 ms/step; 8pcs: 17.0 ms/step |
|
|
|
| Speed(GPU) | 1pc: 44.27 ms/step; |
|
|
|
| Total time(Ascend) | 1pc: 55.5 mins; 8pcs: 15.0 mins |
|
|
|
| Parameters (M) | 4.8 |
|
|
|
| Checkpoint for Fine tuning | 6.4M (.ckpt file) |
|
|
|
|
|
|
#### SqueezeNet on ImageNet
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
| Model Version | SqueezeNet |
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
|
|
| uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | ImageNet |
|
|
|
| Training Parameters | epoch=200, steps=5004, batch_size=32, lr=0.01 |
|
|
|
| Optimizer | Momentum |
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
| outputs | probability |
|
|
|
| Loss | 2.9150 |
|
|
|
| Speed(Ascend) | 8pcs: 19.9 ms/step |
|
|
|
| Speed(GPU) | 1pcs: 47.59 ms/step |
|
|
|
| Total time(Ascend) | 8pcs: 5.2 hours |
|
|
|
| Parameters (M) | 4.8 |
|
|
|
| Checkpoint for Fine tuning | 13.3M (.ckpt file) |
|
|
|
|
|
|
#### SqueezeNet_Residual on CIFAR-10
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
| Model Version | SqueezeNet_Residual |
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
|
|
| uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | CIFAR-10 |
|
|
|
| Training Parameters | epoch=150, steps=195, batch_size=32, lr=0.01 |
|
|
|
| Optimizer | Momentum |
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
| outputs | probability |
|
|
|
| Loss | 0.0641 |
|
|
|
| Speed(Ascend) | 1pc: 16.9 ms/step; 8pcs: 17.3 ms/step |
|
|
|
| Speed(GPU) | 1pc: 45.23 ms/step; |
|
|
|
| Total time(Ascend) | 1pc: 68.6 mins; 8pcs: 20.9 mins |
|
|
|
| Parameters (M) | 4.8 |
|
|
|
| Checkpoint for Fine tuning | 6.5M (.ckpt file) |
|
|
|
|
|
|
#### SqueezeNet_Residual on ImageNet
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
| Model Version | SqueezeNet_Residual |
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
|
|
| uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | ImageNet |
|
|
|
| Training Parameters | epoch=300, steps=5004, batch_size=32, lr=0.01 |
|
|
|
| Optimizer | Momentum |
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
| outputs | probability |
|
|
|
| Loss | 2.9040 |
|
|
|
| Speed(Ascend) | 8pcs: 20.2 ms/step |
|
|
|
| Total time(Ascend) | 8pcs: 8.0 hours |
|
|
|
| Parameters (M) | 4.8 |
|
|
|
| Checkpoint for Fine tuning | 15.3M (.ckpt file) |
|
|
|
|
|
|
### Inference Performance
|
|
|
|
|
|
#### SqueezeNet on CIFAR-10
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| ------------------- | --------------------------- |
|
|
|
| Model Version | SqueezeNet |
|
|
|
| Resource | Ascend 910 |
|
|
|
| Uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | CIFAR-10 |
|
|
|
| batch_size | 32 |
|
|
|
| outputs | probability |
|
|
|
| Accuracy | 1pc: 89.0%; 8pcs: 84.4% |
|
|
|
|
|
|
#### SqueezeNet on ImageNet
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| ------------------- | --------------------------- |
|
|
|
| Model Version | SqueezeNet |
|
|
|
| Resource | Ascend 910 |
|
|
|
| Uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | ImageNet |
|
|
|
| batch_size | 32 |
|
|
|
| outputs | probability |
|
|
|
| Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) |
|
|
|
|
|
|
#### SqueezeNet_Residual on CIFAR-10
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| ------------------- | --------------------------- |
|
|
|
| Model Version | SqueezeNet_Residual |
|
|
|
| Resource | Ascend 910 |
|
|
|
| Uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | CIFAR-10 |
|
|
|
| batch_size | 32 |
|
|
|
| outputs | probability |
|
|
|
| Accuracy | 1pc: 90.8%; 8pcs: 87.4% |
|
|
|
|
|
|
#### SqueezeNet_Residual on ImageNet
|
|
|
|
|
|
| Parameters | Contents |
|
|
|
| ------------------- | --------------------------- |
|
|
|
| Model Version | SqueezeNet_Residual |
|
|
|
| Resource | Ascend 910 |
|
|
|
| Uploaded Date | 11/06/2020 (month/day/year) |
|
|
|
| MindSpore Version | 1.0.1 |
|
|
|
| Dataset | ImageNet |
|
|
|
| batch_size | 32 |
|
|
|
| outputs | probability |
|
|
|
| Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) |
|
|
|
|
|
|
## [How to use](#contents)
|
|
|
|
|
|
### Inference
|
|
|
|
|
|
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
|
|
|
|
|
|
- Running on Ascend
|
|
|
|
|
|
```py
|
|
|
# Set context
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
|
device_target='Ascend',
|
|
|
device_id=device_id)
|
|
|
|
|
|
# Load unseen dataset for inference
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
|
do_train=False,
|
|
|
batch_size=config.batch_size,
|
|
|
target='Ascend')
|
|
|
|
|
|
# Define model
|
|
|
net = squeezenet(num_classes=config.class_num)
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
model = Model(net,
|
|
|
loss_fn=loss,
|
|
|
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
|
|
|
|
|
# Load pre-trained model
|
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
|
load_param_into_net(net, param_dict)
|
|
|
net.set_train(False)
|
|
|
|
|
|
# Make predictions on the unseen dataset
|
|
|
acc = model.eval(dataset)
|
|
|
print("accuracy: ", acc)
|
|
|
```
|
|
|
|
|
|
- Running on GPU:
|
|
|
|
|
|
```py
|
|
|
# Set context
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
|
device_target='GPU',
|
|
|
device_id=device_id)
|
|
|
|
|
|
# Load unseen dataset for inference
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
|
do_train=False,
|
|
|
batch_size=config.batch_size,
|
|
|
target='GPU')
|
|
|
|
|
|
# Define model
|
|
|
net = squeezenet(num_classes=config.class_num)
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
model = Model(net,
|
|
|
loss_fn=loss,
|
|
|
metrics={'top_1_accuracy', 'top_5_accuracy'})
|
|
|
|
|
|
# Load pre-trained model
|
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
|
load_param_into_net(net, param_dict)
|
|
|
net.set_train(False)
|
|
|
|
|
|
# Make predictions on the unseen dataset
|
|
|
acc = model.eval(dataset)
|
|
|
print("accuracy: ", acc)
|
|
|
```
|
|
|
|
|
|
### Continue Training on the Pretrained Model
|
|
|
|
|
|
- running on Ascend
|
|
|
|
|
|
```py
|
|
|
# Load dataset
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
|
do_train=True,
|
|
|
repeat_num=1,
|
|
|
batch_size=config.batch_size,
|
|
|
target='Ascend')
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
|
|
# define net
|
|
|
net = squeezenet(num_classes=config.class_num)
|
|
|
|
|
|
# load checkpoint
|
|
|
if args_opt.pre_trained:
|
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
|
load_param_into_net(net, param_dict)
|
|
|
|
|
|
# init lr
|
|
|
lr = get_lr(lr_init=config.lr_init,
|
|
|
lr_end=config.lr_end,
|
|
|
lr_max=config.lr_max,
|
|
|
total_epochs=config.epoch_size,
|
|
|
warmup_epochs=config.warmup_epochs,
|
|
|
pretrain_epochs=config.pretrain_epoch_size,
|
|
|
steps_per_epoch=step_size,
|
|
|
lr_decay_mode=config.lr_decay_mode)
|
|
|
lr = Tensor(lr)
|
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
loss_scale = FixedLossScaleManager(config.loss_scale,
|
|
|
drop_overflow_update=False)
|
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
|
|
lr,
|
|
|
config.momentum,
|
|
|
config.weight_decay,
|
|
|
config.loss_scale,
|
|
|
use_nesterov=True)
|
|
|
model = Model(net,
|
|
|
loss_fn=loss,
|
|
|
optimizer=opt,
|
|
|
loss_scale_manager=loss_scale,
|
|
|
metrics={'acc'},
|
|
|
amp_level="O2",
|
|
|
keep_batchnorm_fp32=False)
|
|
|
|
|
|
# Set callbacks
|
|
|
config_ck = CheckpointConfig(
|
|
|
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
|
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
|
|
directory=ckpt_save_dir,
|
|
|
config=config_ck)
|
|
|
loss_cb = LossMonitor()
|
|
|
|
|
|
# Start training
|
|
|
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
|
|
callbacks=[time_cb, ckpt_cb, loss_cb])
|
|
|
print("train success")
|
|
|
```
|
|
|
|
|
|
- running on GPU
|
|
|
|
|
|
```py
|
|
|
# Load dataset
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
|
do_train=True,
|
|
|
repeat_num=1,
|
|
|
batch_size=config.batch_size,
|
|
|
target='Ascend')
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
|
|
# define net
|
|
|
net = squeezenet(num_classes=config.class_num)
|
|
|
|
|
|
# load checkpoint
|
|
|
if args_opt.pre_trained:
|
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
|
load_param_into_net(net, param_dict)
|
|
|
|
|
|
# init lr
|
|
|
lr = get_lr(lr_init=config.lr_init,
|
|
|
lr_end=config.lr_end,
|
|
|
lr_max=config.lr_max,
|
|
|
total_epochs=config.epoch_size,
|
|
|
warmup_epochs=config.warmup_epochs,
|
|
|
pretrain_epochs=config.pretrain_epoch_size,
|
|
|
steps_per_epoch=step_size,
|
|
|
lr_decay_mode=config.lr_decay_mode)
|
|
|
lr = Tensor(lr)
|
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
|
|
lr,
|
|
|
config.momentum,
|
|
|
config.weight_decay,
|
|
|
use_nesterov=True)
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
|
|
|
|
|
# Set callbacks
|
|
|
config_ck = CheckpointConfig(
|
|
|
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
|
ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
|
|
|
directory=ckpt_save_dir,
|
|
|
config=config_ck)
|
|
|
loss_cb = LossMonitor()
|
|
|
|
|
|
# Start training
|
|
|
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
|
|
|
callbacks=[time_cb, ckpt_cb, loss_cb])
|
|
|
print("train success")
|
|
|
```
|
|
|
|
|
|
### Transfer Learning
|
|
|
|
|
|
To be added.
|
|
|
|
|
|
# [Description of Random Situation](#contents)
|
|
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|