You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/analysis_config.cc

415 lines
12 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
extern const std::vector<std::string> kAnakinSubgraphPasses;
PassStrategy *AnalysisConfig::pass_builder() const {
if (!pass_builder_.get()) {
if (use_gpu_) {
LOG(INFO) << "Create GPU IR passes";
pass_builder_.reset(new GpuPassStrategy);
} else {
LOG(INFO) << "Create CPU IR passes";
pass_builder_.reset(new CpuPassStrategy);
}
} else if (pass_builder_->use_gpu() ^ use_gpu()) {
LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
"PassBuilder, the flags are "
<< use_gpu() << " " << pass_builder_->use_gpu();
LOG(WARNING) << "Please make them compatible, still use the existing "
"PassBuilder.";
}
return pass_builder_.get();
}
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
model_dir_ = model_dir;
Update();
}
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
const std::string &params_file) {
prog_file_ = prog_file;
params_file_ = params_file;
Update();
}
void AnalysisConfig::SetModel(const std::string &prog_file_path,
const std::string &params_file_path) {
prog_file_ = prog_file_path;
params_file_ = params_file_path;
Update();
}
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id) {
#ifdef PADDLE_WITH_CUDA
use_gpu_ = true;
memory_pool_init_size_mb_ = memory_pool_init_size_mb;
device_id_ = device_id;
#else
LOG(ERROR) << "Please compile with gpu to EnableGpu()";
use_gpu_ = false;
#endif
Update();
}
void AnalysisConfig::DisableGpu() {
use_gpu_ = false;
Update();
}
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
#define CP_MEMBER(member__) member__ = other.member__;
// Model related.
CP_MEMBER(model_dir_);
CP_MEMBER(prog_file_);
CP_MEMBER(params_file_);
CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and
// params_file_ fields.
// Gpu related.
CP_MEMBER(use_gpu_);
CP_MEMBER(device_id_);
CP_MEMBER(memory_pool_init_size_mb_);
CP_MEMBER(enable_memory_optim_);
CP_MEMBER(static_memory_optim_);
CP_MEMBER(static_memory_optim_force_update_);
// TensorRT related.
CP_MEMBER(use_tensorrt_);
CP_MEMBER(tensorrt_workspace_size_);
CP_MEMBER(tensorrt_max_batchsize_);
CP_MEMBER(tensorrt_min_subgraph_size_);
CP_MEMBER(tensorrt_precision_mode_);
CP_MEMBER(trt_use_static_engine_);
// MKLDNN related.
CP_MEMBER(use_mkldnn_);
CP_MEMBER(mkldnn_enabled_op_types_);
// Quantization related.
CP_MEMBER(use_mkldnn_quantizer_);
CP_MEMBER(mkldnn_quantizer_config_);
CP_MEMBER(use_anakin_);
CP_MEMBER(anakin_max_batchsize_);
CP_MEMBER(anakin_max_input_shape_);
CP_MEMBER(anakin_min_subgraph_size_);
CP_MEMBER(anakin_precision_mode_);
CP_MEMBER(anakin_auto_config_layout_);
CP_MEMBER(anakin_passes_filter_);
CP_MEMBER(anakin_ops_filter_);
// Ir related.
CP_MEMBER(enable_ir_optim_);
CP_MEMBER(use_feed_fetch_ops_);
CP_MEMBER(ir_debug_);
CP_MEMBER(specify_input_name_);
CP_MEMBER(cpu_math_library_num_threads_);
CP_MEMBER(serialized_info_cache_);
if (use_gpu_) {
pass_builder_.reset(new GpuPassStrategy(
*static_cast<GpuPassStrategy *>(other.pass_builder())));
} else {
pass_builder_.reset(new CpuPassStrategy(
*static_cast<CpuPassStrategy *>(other.pass_builder())));
}
#undef CP_MEMBER
Update();
}
void AnalysisConfig::EnableMKLDNN() {
#ifdef PADDLE_WITH_MKLDNN
use_mkldnn_ = true;
#else
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
use_mkldnn_ = false;
#endif
Update();
}
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
if (!mkldnn_quantizer_config_)
mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
use_mkldnn_quantizer_ = true;
#else
LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
use_mkldnn_quantizer_ = false;
#endif
Update();
}
std::shared_ptr<MkldnnQuantizerConfig> AnalysisConfig::mkldnn_quantizer_config()
const {
PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
"MkldnnQuantizer was not enabled yet.");
return mkldnn_quantizer_config_;
}
void AnalysisConfig::EnableTensorRtEngine(
int workspace_size, int max_batch_size, int min_subgraph_size,
AnalysisConfig::Precision precision_mode, bool use_static) {
#ifdef PADDLE_WITH_CUDA
if (!use_gpu()) {
LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
return;
}
use_tensorrt_ = true;
tensorrt_workspace_size_ = workspace_size;
tensorrt_max_batchsize_ = max_batch_size;
tensorrt_min_subgraph_size_ = min_subgraph_size;
tensorrt_precision_mode_ = precision_mode;
trt_use_static_engine_ = use_static;
Update();
#else
LOG(ERROR)
<< "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
}
// TODO(Superjomn) refactor this, buggy.
void AnalysisConfig::Update() {
auto info = SerializeInfoCache();
if (info == serialized_info_cache_) return;
// Transfer pass_builder and copy the existing compatible passes.
if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
if (use_gpu()) {
pass_builder_.reset(new GpuPassStrategy);
if (use_tensorrt_) {
// Append after the Affine_channel_conv_fuse pass.
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
}
} else {
pass_builder_.reset(new CpuPassStrategy);
}
} else {
if (use_gpu()) {
pass_builder_.reset(new GpuPassStrategy(
*static_cast<GpuPassStrategy *>(pass_builder_.get())));
} else {
pass_builder_.reset(new CpuPassStrategy(
*static_cast<CpuPassStrategy *>(pass_builder_.get())));
}
}
if (use_tensorrt_) {
const auto &passes = pass_builder_->AllPasses();
if (std::find(passes.begin(), passes.end(), "tensorrt_subgraph_pass") ==
std::end(passes)) {
// Append after the Affine_channel_conv_fuse pass.
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
}
pass_builder()->DeletePass("runtime_context_cache_pass");
}
if (use_mkldnn_) {
#ifdef PADDLE_WITH_MKLDNN
if (!enable_ir_optim_) {
LOG(ERROR)
<< "EnableMKLDNN() only works when IR optimization is enabled.";
} else {
pass_builder()->EnableMKLDNN();
}
#endif
}
// Quantization passes must come after all other optimization passes
if (use_mkldnn_quantizer_) {
if (!enable_ir_optim_) {
LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
"is enabled.";
}
#ifdef PADDLE_WITH_MKLDNN
pass_builder()->EnableMkldnnQuantizer();
#endif
}
#ifdef PADDLE_WITH_MKLDNN
// Do not optimize before quantization
if (enable_memory_optim_ && !use_mkldnn_quantizer_) {
#else
if (enable_memory_optim_) {
#endif
pass_builder()->AppendAnalysisPass("memory_optimize_pass");
}
if (use_anakin_) {
PADDLE_ENFORCE(!use_tensorrt_,
"Anakin sub-graph and TensorRT sub-graph are not allowed to "
"run at the same time!");
if (use_gpu_) {
LOG(INFO) << "Run Anakin GPU mode";
} else {
LOG(INFO) << "Run Anakin CPU mode";
}
pass_builder()->ClearPasses();
for (const auto &pass : kAnakinSubgraphPasses) {
if (std::find(anakin_passes_filter_.begin(), anakin_passes_filter_.end(),
pass) == anakin_passes_filter_.end()) {
pass_builder()->AppendPass(pass);
}
}
}
if (ir_debug_) {
pass_builder()->TurnOnDebug();
}
}
std::string AnalysisConfig::SerializeInfoCache() {
std::stringstream ss;
ss << model_dir_;
ss << prog_file_;
ss << params_file_;
ss << use_gpu_;
ss << device_id_;
ss << memory_pool_init_size_mb_;
ss << use_tensorrt_;
ss << tensorrt_workspace_size_;
ss << tensorrt_max_batchsize_;
ss << tensorrt_min_subgraph_size_;
ss << enable_memory_optim_;
ss << static_memory_optim_;
ss << static_memory_optim_force_update_;
ss << use_mkldnn_;
for (auto &item : mkldnn_enabled_op_types_) ss << item;
ss << ";";
ss << use_mkldnn_quantizer_;
ss << model_from_memory_;
ss << enable_ir_optim_;
ss << use_feed_fetch_ops_;
ss << ir_debug_;
ss << specify_input_name_;
ss << cpu_math_library_num_threads_;
ss << use_anakin_;
ss << anakin_min_subgraph_size_;
return ss.str();
}
void AnalysisConfig::SetCpuMathLibraryNumThreads(
int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Update();
}
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#ifdef PADDLE_WITH_CUDA
// Get the GPU memory details and calculate the fraction of memory for the
// GPU memory pool.
size_t gpu_used, gpu_available;
platform::GpuMemoryUsage(&gpu_used, &gpu_available);
double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
float fraction_of_gpu_memory =
static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
return fraction_of_gpu_memory;
#else
return 0.;
#endif
}
void AnalysisConfig::EnableMemoryOptim(bool static_optim,
bool force_update_static_cache) {
enable_memory_optim_ = true;
static_memory_optim_ = static_optim;
static_memory_optim_force_update_ = force_update_static_cache;
Update();
}
bool AnalysisConfig::enable_memory_optim() const {
return enable_memory_optim_;
}
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
size_t prog_buffer_size,
const char *param_buffer,
size_t param_buffer_size) {
prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
model_from_memory_ = true;
Update();
}
void AnalysisConfig::SetEngineOptInfo(
std::map<std::string, std::string> engine_opt_info) {
engine_opt_info_ = engine_opt_info;
}
NativeConfig AnalysisConfig::ToNativeConfig() const {
NativeConfig config;
config.model_dir = model_dir_;
config.prog_file = prog_file_;
config.param_file = params_file_;
config.use_gpu = use_gpu_;
config.device = device_id_;
config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
config.specify_input_name = specify_input_name_;
return config;
}
void AnalysisConfig::SwitchIrDebug(int x) {
ir_debug_ = x;
Update();
}
void AnalysisConfig::EnableAnakinEngine(
int max_batch_size, std::map<std::string, std::vector<int>> max_input_shape,
int min_subgraph_size, AnalysisConfig::Precision precision_mode,
bool auto_config_layout, std::vector<std::string> passes_filter,
std::vector<std::string> ops_filter) {
anakin_max_batchsize_ = max_batch_size;
anakin_max_input_shape_ = max_input_shape;
anakin_min_subgraph_size_ = min_subgraph_size;
anakin_passes_filter_ = passes_filter;
anakin_ops_filter_ = ops_filter;
use_anakin_ = true;
anakin_precision_mode_ = precision_mode;
anakin_auto_config_layout_ = auto_config_layout;
Update();
}
} // namespace paddle