You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/evaluator.py

387 lines
15 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import numpy as np
import layers
from framework import Program, Variable, program_guard
import unique_name
from layer_helper import LayerHelper
from initializer import Constant
__all__ = [
'ChunkEvaluator',
'EditDistance',
'DetectionMAP',
]
def _clone_var_(block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
class Evaluator(object):
"""
Base Class for all evaluators
Args:
name(str): The name of evaluator. such as, "accuracy". Used for generate
temporary variable name.
main_program(Program, optional): The evaluator should be added to this
main_program. Default default_main_program()
startup_program(Program, optional):The parameter should be added to this
startup_program. Default default_startup_program()
Attributes:
states(list): The list of state variables. states will be reset to zero
when `reset` is invoked.
metrics(list): The list of metrics variables. They will be calculate
every mini-batch
"""
def __init__(self, name, **kwargs):
warnings.warn(
"The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
% (self.__class__.__name__, self.__class__.__name__), Warning)
self.states = []
self.metrics = []
self.helper = LayerHelper(name, **kwargs)
def reset(self, executor, reset_program=None):
"""
reset metric states at the begin of each pass/user specified batch
"""
if reset_program is None:
reset_program = Program()
with program_guard(main_program=reset_program):
for var in self.states:
assert isinstance(var, Variable)
g_var = _clone_var_(reset_program.current_block(), var)
layers.fill_constant(
shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
executor.run(reset_program)
def eval(self, executor, eval_program=None):
"""
Evaluate the statistics merged by multiple mini-batches.
"""
raise NotImplementedError()
def create_state(self, suffix, dtype, shape):
"""
Create state variable.
NOTE: It is not a public API.
Args:
suffix(str): the state suffix.
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
dtype(str|core.VarDesc.VarType): the state data type
shape(tuple|list): the shape of state
Returns: State variable
"""
state = self.helper.create_variable(
name="_".join([unique_name.generate(self.helper.name), suffix]),
persistable=True,
dtype=dtype,
shape=shape)
self.states.append(state)
return state
7 years ago
class ChunkEvaluator(Evaluator):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
numbers.
"""
def __init__(
self,
input,
label,
chunk_scheme,
num_chunk_types,
excluded_chunk_types=None, ):
super(ChunkEvaluator, self).__init__("chunk_eval")
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.num_infer_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_infer_chunks')
self.num_label_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_label_chunks')
self.num_correct_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_correct_chunks')
precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
input=input,
label=label,
chunk_scheme=chunk_scheme,
num_chunk_types=num_chunk_types,
excluded_chunk_types=excluded_chunk_types, )
layers.sums(
input=[self.num_infer_chunks, num_infer_chunks],
out=self.num_infer_chunks)
layers.sums(
input=[self.num_label_chunks, num_label_chunks],
out=self.num_label_chunks)
layers.sums(
input=[self.num_correct_chunks, num_correct_chunks],
out=self.num_correct_chunks)
self.metrics.extend([precision, recall, f1_score])
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
eval_program,
fetch_list=[_clone_var_(block, state) for state in self.states])
num_infer_chunks = num_infer_chunks[0]
num_label_chunks = num_label_chunks[0]
num_correct_chunks = num_correct_chunks[0]
precision = float(
num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
recall = float(
num_correct_chunks) / num_label_chunks if num_label_chunks else 0
f1_score = float(2 * precision * recall) / (
precision + recall) if num_correct_chunks else 0
return np.array(
[precision], dtype='float32'), np.array(
[recall], dtype='float32'), np.array(
[f1_score], dtype='float32')
class EditDistance(Evaluator):
"""
Accumulate edit distance sum and sequence number from mini-batches and
compute the average edit_distance and instance error of all batches.
Args:
input: the sequences predicted by network.
label: the target sequences which must has same sequence count
with input.
ignored_tokens(list of int): Tokens that should be removed before
calculating edit distance.
Example:
exe = fluid.executor(place)
distance_evaluator = fluid.Evaluator.EditDistance(input, label)
for epoch in PASS_NUM:
distance_evaluator.reset(exe)
for data in batches:
7 years ago
loss = exe.run(fetch_list=[cost])
distance, instance_error = distance_evaluator.eval(exe)
In the above example:
'distance' is the average of the edit distance in a pass.
'instance_error' is the instance error rate in a pass.
"""
def __init__(self, input, label, ignored_tokens=None, **kwargs):
super(EditDistance, self).__init__("edit_distance", **kwargs)
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.total_distance = self.create_state(
dtype='float32', shape=[1], suffix='total_distance')
self.seq_num = self.create_state(
dtype='int64', shape=[1], suffix='seq_num')
self.instance_error = self.create_state(
dtype='int64', shape=[1], suffix='instance_error')
distances, seq_num = layers.edit_distance(
input=input, label=label, ignored_tokens=ignored_tokens)
zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
compare_result = layers.equal(distances, zero)
compare_result_int = layers.cast(x=compare_result, dtype='int')
seq_right_count = layers.reduce_sum(compare_result_int)
instance_error_count = layers.elementwise_sub(
x=seq_num, y=seq_right_count)
total_distance = layers.reduce_sum(distances)
layers.sums(
input=[self.total_distance, total_distance],
out=self.total_distance)
layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
layers.sums(
input=[self.instance_error, instance_error_count],
out=self.instance_error)
self.metrics.append(total_distance)
self.metrics.append(instance_error_count)
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
with program_guard(main_program=eval_program):
total_distance = _clone_var_(block, self.total_distance)
seq_num = _clone_var_(block, self.seq_num)
instance_error = _clone_var_(block, self.instance_error)
seq_num = layers.cast(x=seq_num, dtype='float32')
instance_error = layers.cast(x=instance_error, dtype='float32')
avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
avg_instance_error = layers.elementwise_div(
x=instance_error, y=seq_num)
result = executor.run(
eval_program, fetch_list=[avg_distance, avg_instance_error])
return np.array(result[0]), np.array(result[1])
class DetectionMAP(Evaluator):
"""
Calculate the detection mean average precision (mAP).
TODO (Dang Qingqing): update the following doc.
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
Args:
input (Variable): The detection results, which is a LoDTensor with shape
[M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
gt_label (Variable): The ground truth label index, which is a LoDTensor
with shape [N, 1].
gt_box (Variable): The ground truth bounding box (bbox), which is a
LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
gt_difficult (Variable|None): Whether this ground truth is a difficult
bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
it means all the ground truth labels are not difficult bbox.
class_num (int): The class number.
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all categories will be
considered, 0 by defalut.
overlap_threshold (float): The threshold for deciding true/false
positive, 0.5 by defalut.
evaluate_difficult (bool): Whether to consider difficult ground truth
for evaluation, True by defalut. This argument does not work when
gt_difficult is None.
ap_version (string): The average precision calculation ways, it must be
'integral' or '11point'. Please check
https://sanchom.wordpress.com/tag/average-precision/ for details.
- 11point: the 11-point interpolated average precision.
- integral: the natural integral of the precision-recall curve.
Example:
exe = fluid.executor(place)
map_evaluator = fluid.Evaluator.DetectionMAP(input,
gt_label, gt_box, gt_difficult)
cur_map, accum_map = map_evaluator.get_map_var()
fetch = [cost, cur_map, accum_map]
for epoch in PASS_NUM:
map_evaluator.reset(exe)
for data in batches:
loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
In the above example:
'cur_map_v' is the mAP of current mini-batch.
'accum_map_v' is the accumulative mAP of one pass.
"""
def __init__(self,
input,
gt_label,
gt_box,
gt_difficult=None,
class_num=None,
background_label=0,
overlap_threshold=0.5,
evaluate_difficult=True,
ap_version='integral'):
super(DetectionMAP, self).__init__("map_eval")
gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
if gt_difficult:
gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
else:
label = layers.concat([gt_label, gt_box], axis=1)
# calculate mean average precision (mAP) of current mini-batch
map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
ap_version=ap_version)
self.create_state(dtype='int32', shape=None, suffix='accum_pos_count')
self.create_state(dtype='float32', shape=None, suffix='accum_true_pos')
self.create_state(dtype='float32', shape=None, suffix='accum_false_pos')
self.has_state = None
var = self.helper.create_variable(
persistable=True, dtype='int32', shape=[1])
self.helper.set_variable_initializer(
var, initializer=Constant(value=int(0)))
self.has_state = var
# calculate accumulative mAP
accum_map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
has_state=self.has_state,
input_states=self.states,
out_states=self.states,
ap_version=ap_version)
layers.fill_constant(
shape=self.has_state.shape,
value=1,
dtype=self.has_state.dtype,
out=self.has_state)
self.cur_map = map
self.accum_map = accum_map
def get_map_var(self):
return self.cur_map, self.accum_map
def reset(self, executor, reset_program=None):
if reset_program is None:
reset_program = Program()
with program_guard(main_program=reset_program):
var = _clone_var_(reset_program.current_block(), self.has_state)
layers.fill_constant(
shape=var.shape, value=0, dtype=var.dtype, out=var)
executor.run(reset_program)