You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/detection/box_coder_op.h

248 lines
9.8 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
7 years ago
namespace paddle {
namespace operators {
enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };
inline BoxCodeType GetBoxCodeType(const std::string &type) {
7 years ago
if (type == "encode_center_size") {
return BoxCodeType::kEncodeCenterSize;
} else if (type == "decode_center_size") {
return BoxCodeType::kDecodeCenterSize;
}
PADDLE_THROW("Not support type %s.", type);
}
template <typename DeviceContext, typename T>
7 years ago
class BoxCoderKernel : public framework::OpKernel<T> {
public:
void EncodeCenterSize(const framework::Tensor *target_box,
const framework::Tensor *prior_box,
const framework::Tensor *prior_box_var,
const bool normalized,
const std::vector<float> variance, T *output) const {
int64_t row = target_box->dims()[0];
int64_t col = prior_box->dims()[0];
int64_t len = prior_box->dims()[1];
7 years ago
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
7 years ago
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
size_t offset = i * col * len + j * len;
T prior_box_width = prior_box_data[j * len + 2] -
prior_box_data[j * len] + (normalized == false);
T prior_box_height = prior_box_data[j * len + 3] -
prior_box_data[j * len + 1] +
(normalized == false);
T prior_box_center_x = prior_box_data[j * len] + prior_box_width / 2;
7 years ago
T prior_box_center_y =
prior_box_data[j * len + 1] + prior_box_height / 2;
7 years ago
T target_box_center_x =
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
7 years ago
T target_box_center_y =
(target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
T target_box_width = target_box_data[i * len + 2] -
target_box_data[i * len] + (normalized == false);
T target_box_height = target_box_data[i * len + 3] -
target_box_data[i * len + 1] +
(normalized == false);
7 years ago
output[offset] =
(target_box_center_x - prior_box_center_x) / prior_box_width;
output[offset + 1] =
(target_box_center_y - prior_box_center_y) / prior_box_height;
7 years ago
output[offset + 2] =
std::log(std::fabs(target_box_width / prior_box_width));
7 years ago
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height));
}
}
if (prior_box_var) {
const T *prior_box_var_data = prior_box_var->data<T>();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
int prior_var_offset = j * len;
output[offset + k] /= prior_box_var_data[prior_var_offset + k];
}
}
}
} else if (!(variance.empty())) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
output[offset + k] /= static_cast<T>(variance[k]);
}
}
7 years ago
}
}
}
template <int axis, int var_size>
void DecodeCenterSize(const framework::Tensor *target_box,
const framework::Tensor *prior_box,
const framework::Tensor *prior_box_var,
const bool normalized, std::vector<float> variance,
T *output) const {
int64_t row = target_box->dims()[0];
int64_t col = target_box->dims()[1];
int64_t len = target_box->dims()[2];
7 years ago
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
7 years ago
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
T var_data[4] = {1., 1., 1., 1.};
T *var_ptr = var_data;
size_t offset = i * col * len + j * len;
int prior_box_offset = axis == 0 ? j * len : i * len;
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
T prior_box_height = prior_box_data[prior_box_offset + 3] -
prior_box_data[prior_box_offset + 1] +
(normalized == false);
7 years ago
T prior_box_center_x =
prior_box_data[prior_box_offset] + prior_box_width / 2;
7 years ago
T prior_box_center_y =
prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
7 years ago
T target_box_center_x = 0, target_box_center_y = 0;
T target_box_width = 0, target_box_height = 0;
int prior_var_offset = axis == 0 ? j * len : i * len;
if (var_size == 2) {
std::memcpy(var_ptr, prior_box_var->data<T>() + prior_var_offset,
4 * sizeof(T));
} else if (var_size == 1) {
var_ptr = reinterpret_cast<T *>(variance.data());
}
T box_var_x = *var_ptr;
T box_var_y = *(var_ptr + 1);
T box_var_w = *(var_ptr + 2);
T box_var_h = *(var_ptr + 3);
target_box_center_x =
box_var_x * target_box_data[offset] * prior_box_width +
prior_box_center_x;
target_box_center_y =
box_var_y * target_box_data[offset + 1] * prior_box_height +
prior_box_center_y;
target_box_width =
std::exp(box_var_w * target_box_data[offset + 2]) * prior_box_width;
target_box_height = std::exp(box_var_h * target_box_data[offset + 3]) *
prior_box_height;
7 years ago
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
output[offset + 2] =
target_box_center_x + target_box_width / 2 - (normalized == false);
output[offset + 3] =
target_box_center_y + target_box_height / 2 - (normalized == false);
7 years ago
}
}
}
void Compute(const framework::ExecutionContext &context) const override {
auto *prior_box = context.Input<framework::Tensor>("PriorBox");
auto *prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto *target_box = context.Input<framework::LoDTensor>("TargetBox");
auto *output_box = context.Output<framework::Tensor>("OutputBox");
std::vector<float> variance = context.Attr<std::vector<float>>("variance");
const int axis = context.Attr<int>("axis");
7 years ago
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
if (prior_box_var) {
PADDLE_ENFORCE(variance.empty(),
"Input 'PriorBoxVar' and attribute 'variance' should not"
"be used at the same time.");
}
if (!(variance.empty())) {
PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
"Size of attribute 'variance' should be 4");
}
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
7 years ago
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
if (code_type == BoxCodeType::kDecodeCenterSize) {
col = target_box->dims()[1];
}
auto len = prior_box->dims()[1];
7 years ago
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
7 years ago
T *output = output_box->data<T>();
7 years ago
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize(target_box, prior_box, prior_box_var, normalized,
variance, output);
7 years ago
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
if (prior_box_var) {
if (axis == 0) {
DecodeCenterSize<0, 2>(target_box, prior_box, prior_box_var,
normalized, variance, output);
} else {
DecodeCenterSize<1, 2>(target_box, prior_box, prior_box_var,
normalized, variance, output);
}
} else if (!(variance.empty())) {
if (axis == 0) {
DecodeCenterSize<0, 1>(target_box, prior_box, prior_box_var,
normalized, variance, output);
} else {
DecodeCenterSize<1, 1>(target_box, prior_box, prior_box_var,
normalized, variance, output);
}
} else {
if (axis == 0) {
DecodeCenterSize<0, 0>(target_box, prior_box, prior_box_var,
normalized, variance, output);
} else {
DecodeCenterSize<1, 0>(target_box, prior_box, prior_box_var,
normalized, variance, output);
}
}
7 years ago
}
}
};
} // namespace operators
} // namespace paddle