You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc

163 lines
4.8 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
struct Record {
std::vector<float> data;
std::vector<int32_t> shape;
};
Record ProcessALine(const std::string &line) {
VLOG(3) << "process a line";
std::vector<std::string> columns;
split(line, '\t', &columns);
CHECK_EQ(columns.size(), 2UL)
<< "data format error, should be <data>\t<shape>";
Record record;
std::vector<std::string> data_strs;
split(columns[0], ' ', &data_strs);
for (auto &d : data_strs) {
record.data.push_back(std::stof(d));
}
std::vector<std::string> shape_strs;
split(columns[1], ' ', &shape_strs);
for (auto &s : shape_strs) {
record.shape.push_back(std::stoi(s));
}
VLOG(3) << "data size " << record.data.size();
VLOG(3) << "data shape size " << record.shape.size();
return record;
}
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model + "/__model__",
FLAGS_infer_model + "/__params__");
cfg->DisableGpu();
cfg->SwitchIrDebug();
cfg->SwitchSpecifyInputNames(false);
// TODO(TJ): fix fusion gru
cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
std::string line;
std::ifstream file(FLAGS_infer_data);
std::getline(file, line);
auto record = ProcessALine(line);
PaddleTensor input;
input.shape = record.shape;
input.dtype = PaddleDType::FLOAT32;
size_t input_size = record.data.size() * sizeof(float);
input.data.Resize(input_size);
memcpy(input.data.data(), record.data.data(), input_size);
std::vector<PaddleTensor> input_slots;
input_slots.assign({input});
(*inputs).emplace_back(input_slots);
}
// Easy for profiling independently.
// ocr, mobilenet and se_resnext50
void profile(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
[MKL-DNN] Add Fully Connected Op for inference only(#15226) * fuse mul and elementwise add to fc * Reimplement the FC forward operator * Fix FC MKLDNN integration by transposing weights * Add FC MKLDNN Pass test=develop * FC MKLDNN Pass: change memcpy to std::copy * Fix MKLDNN FC handling of mismatch input and weights dims * Lower tolerance for MKL-DNN in resnet50 test test=develop * Adjust FC to support MKLDNN Op placement test=develop * Adjust Placement Op to set use_mkldnn attribute for graph test=develop * MKLDNN FC: fix weights format so that gemm version is called test=develop * FC MKLDNN: Remove tolerance decrease from tester_helper * FC MKL-DNN: Refactor the code, change input reorder to weight reorder * MKL-DNN FC: Introduce operator caching test=develop * FC MKL-DNN: Fix the tensor type in ExpectedKernelType test=develop * FC MKL-DNN: fix style changes test=develop * FC MKL-DNN: fallback to native on non-supported dim sizes test=develop * FC MKLDNN: fix CMake paths test=develop * FC MKLDNN: Refine placement pass graph mkldnn attribute test=develop * Fix Transpiler error for fuse_conv_eltwise test=develop * Fix missing STL includes in files test=develop * FC MKL-DNN: Enable new output size computation Also, refine pass to comply with newest interface. test=develop * FC MKL-DNN: enable only when fc_mkldnn_pass is enabled * FC MKL-DNN: Allow Weights to use oi or io format * FC MKL-DNN: Adjust UT to work with correct dims test=develop * Enable MKL DEBUG for resnet50 analyzer test=develop * FC MKL-DNN: Improve Hashing function test=develop * FC MKL-DNN: Fix shape for fc weights in transpiler * FC MKL-DNN: Update input pointer in re-used fc primitive * Add log for not handling fc fuse for unsupported dims test=develop * FC MKL-DNN: Move transpose from pass to Op Kernel test=develop * FC MKL-DNN: Disable transpose in unit test test=develop * FC MKL-DNN: Remove fc_mkldnn_pass from default list * Correct Flag for fake data analyzer tests test=develop * FC MKL-DNN: Add comment about fc mkldnn pass disablement test=develop * FC MKL-DNN: Disable fc in int8 tests test=develop
6 years ago
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
}
// cfg.pass_builder()->TurnOnDebug();
std::vector<std::vector<PaddleTensor>> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
std::string line;
std::ifstream file(FLAGS_refer_result);
std::getline(file, line);
auto refer = ProcessALine(line);
file.close();
PADDLE_ENFORCE_GT(outputs.size(), 0);
auto &output = outputs.back().front();
size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
CHECK_EQ(numel, refer.data.size());
for (size_t i = 0; i < numel; ++i) {
EXPECT_NEAR(static_cast<float *>(output.data.data())[i], refer.data[i],
1e-5);
}
}
}
TEST(Analyzer_vis, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif
// Check the fuse status
TEST(Analyzer_vis, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
GetFuseStatis(predictor.get(), &num_ops);
}
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
TEST(Analyzer_vis, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_vis, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle