You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
7.1 KiB
225 lines
7.1 KiB
6 years ago
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import print_function
|
||
|
|
||
6 years ago
|
import math
|
||
|
|
||
6 years ago
|
from .. import unique_name
|
||
|
|
||
6 years ago
|
__all__ = [
|
||
6 years ago
|
'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
|
||
6 years ago
|
'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay'
|
||
6 years ago
|
]
|
||
6 years ago
|
|
||
|
|
||
|
class LearningRateDecay(object):
|
||
|
"""
|
||
|
Base class of learning rate decay
|
||
|
"""
|
||
|
|
||
6 years ago
|
def __init__(self, begin=0, step=1, dtype='float32'):
|
||
|
self.step_num = begin
|
||
|
self.step_size = step
|
||
6 years ago
|
self.dtype = dtype
|
||
|
|
||
|
def __call__(self):
|
||
|
lr = self.step()
|
||
|
if isinstance(lr, float):
|
||
6 years ago
|
lr = self.create_lr_var(lr)
|
||
6 years ago
|
self.step_num += self.step_size
|
||
6 years ago
|
return lr
|
||
|
|
||
6 years ago
|
def create_lr_var(self, lr):
|
||
|
from .. import layers
|
||
6 years ago
|
lr = layers.create_global_var(
|
||
|
name=unique_name.generate("learning_rate"),
|
||
|
shape=[1],
|
||
|
value=float(lr),
|
||
|
dtype=self.dtype,
|
||
|
persistable=True)
|
||
6 years ago
|
return lr
|
||
6 years ago
|
|
||
|
def step(self):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
6 years ago
|
class PiecewiseDecay(LearningRateDecay):
|
||
|
def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
|
||
|
super(PiecewiseDecay, self).__init__(begin, step, dtype)
|
||
6 years ago
|
self.boundaries = boundaries
|
||
|
self.values = values
|
||
|
|
||
|
self.vars = []
|
||
|
for value in values:
|
||
|
self.vars.append(self.create_lr_var(value))
|
||
|
|
||
|
def step(self):
|
||
6 years ago
|
for i in range(len(self.boundaries)):
|
||
|
if self.step_num < self.boundaries[i]:
|
||
6 years ago
|
return self.vars[i]
|
||
6 years ago
|
return self.vars[len(self.values) - 1]
|
||
6 years ago
|
|
||
|
|
||
|
class NaturalExpDecay(LearningRateDecay):
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
decay_steps,
|
||
|
decay_rate,
|
||
|
staircase=False,
|
||
|
begin=0,
|
||
|
step=1,
|
||
|
dtype='float32'):
|
||
|
super(NaturalExpDecay, self).__init__(begin, step, dtype)
|
||
|
self.learning_rate = learning_rate
|
||
|
self.decay_steps = decay_steps
|
||
|
self.decay_rate = decay_rate
|
||
|
self.staircase = staircase
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
||
|
if self.staircase:
|
||
|
div_res = layers.floor(div_res)
|
||
|
decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
|
||
|
div_res)
|
||
|
|
||
|
return decayed_lr
|
||
|
|
||
|
|
||
|
class ExponentialDecay(LearningRateDecay):
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
decay_steps,
|
||
|
decay_rate,
|
||
|
staircase=False,
|
||
|
begin=0,
|
||
|
step=1,
|
||
|
dtype='float32'):
|
||
|
super(ExponentialDecay, self).__init__(begin, step, dtype)
|
||
|
self.learning_rate = learning_rate
|
||
|
self.decay_steps = decay_steps
|
||
|
self.decay_rate = decay_rate
|
||
|
self.staircase = staircase
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
||
|
if self.staircase:
|
||
|
div_res = layers.floor(div_res)
|
||
|
|
||
|
decayed_lr = self.learning_rate * (self.decay_rate**div_res)
|
||
|
|
||
|
return decayed_lr
|
||
|
|
||
|
|
||
|
class InverseTimeDecay(LearningRateDecay):
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
decay_steps,
|
||
|
decay_rate,
|
||
|
staircase=False,
|
||
|
begin=0,
|
||
|
step=1,
|
||
|
dtype='float32'):
|
||
|
super(InverseTimeDecay, self).__init__(begin, step, dtype)
|
||
|
self.learning_rate = learning_rate
|
||
|
self.decay_steps = decay_steps
|
||
|
self.decay_rate = decay_rate
|
||
|
self.staircase = staircase
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
||
|
if self.staircase:
|
||
|
div_res = layers.floor(div_res)
|
||
|
|
||
|
decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)
|
||
|
|
||
|
return decayed_lr
|
||
|
|
||
|
|
||
|
class PolynomialDecay(LearningRateDecay):
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
decay_steps,
|
||
|
end_learning_rate=0.0001,
|
||
|
power=1.0,
|
||
|
cycle=False,
|
||
|
begin=0,
|
||
|
step=1,
|
||
|
dtype='float32'):
|
||
|
super(PolynomialDecay, self).__init__(begin, step, dtype)
|
||
|
self.learning_rate = learning_rate
|
||
|
self.decay_steps = decay_steps
|
||
|
self.end_learning_rate = end_learning_rate
|
||
|
self.power = power
|
||
|
self.cycle = cycle
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
6 years ago
|
tmp_step_num = self.step_num
|
||
|
tmp_decay_steps = self.decay_steps
|
||
6 years ago
|
if self.cycle:
|
||
|
div_res = layers.ceil(
|
||
6 years ago
|
self.create_lr_var(tmp_step_num / float(self.decay_steps)))
|
||
6 years ago
|
|
||
6 years ago
|
if tmp_step_num == 0:
|
||
|
div_res = self.create_lr_var(1.0)
|
||
6 years ago
|
tmp_decay_steps = self.decay_steps * div_res
|
||
6 years ago
|
else:
|
||
6 years ago
|
tmp_step_num = self.create_lr_var(tmp_step_num
|
||
|
if tmp_step_num < self.decay_steps
|
||
|
else self.decay_steps)
|
||
|
|
||
|
decayed_lr = (self.learning_rate - self.end_learning_rate) * \
|
||
|
((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
|
||
|
return decayed_lr
|
||
6 years ago
|
|
||
6 years ago
|
|
||
|
class CosineDecay(LearningRateDecay):
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
step_each_epoch,
|
||
|
epochs,
|
||
|
begin=0,
|
||
|
step=1,
|
||
|
dtype='float32'):
|
||
|
super(CosineDecay, self).__init__(begin, step, dtype)
|
||
|
self.learning_rate = learning_rate
|
||
|
self.step_each_epoch = step_each_epoch
|
||
|
self.epochs = epochs
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
|
cur_epoch = layers.floor(
|
||
|
self.create_lr_var(self.step_num / self.step_each_epoch))
|
||
|
decayed_lr = self.learning_rate * 0.5 * (
|
||
|
layers.cos(cur_epoch * math.pi / self.epochs) + 1)
|
||
|
return decayed_lr
|
||
|
|
||
|
|
||
|
class NoamDecay(LearningRateDecay):
|
||
|
def __init__(self, d_model, warmup_steps, begin=1, step=1, dtype='float32'):
|
||
|
super(NoamDecay, self).__init__(begin, step, dtype)
|
||
|
self.d_model = d_model
|
||
|
self.warmup_steps = warmup_steps
|
||
|
|
||
|
def step(self):
|
||
|
from .. import layers
|
||
6 years ago
|
a = self.create_lr_var(self.step_num**-0.5)
|
||
|
b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
|
||
|
lr_value = (self.d_model**-0.5) * layers.elementwise_min(a, b)
|
||
6 years ago
|
return lr_value
|