|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/imperative/layer.h"
|
|
|
|
|
|
|
|
#include <deque>
|
|
|
|
#include <limits>
|
|
|
|
#include <map>
|
|
|
|
#include <random>
|
|
|
|
#include <unordered_set>
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
#include "paddle/fluid/string/printf.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace imperative {
|
|
|
|
|
|
|
|
const char* PyLayer::kFwdInp = "X";
|
|
|
|
const char* PyLayer::kFwdOut = "Out";
|
|
|
|
|
|
|
|
std::map<int, py::object> py_funcs_;
|
|
|
|
|
|
|
|
using framework::Variable;
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class TensorAddToFunctor : public boost::static_visitor<> {
|
|
|
|
public:
|
|
|
|
TensorAddToFunctor(int64_t numel, const T* x, T* y)
|
|
|
|
: numel_(numel), x_(x), y_(y) {}
|
|
|
|
|
|
|
|
void operator()(const platform::CPUPlace& place) {
|
|
|
|
platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
|
|
|
|
platform::DeviceContextPool::Instance().Get(place));
|
|
|
|
auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
|
|
|
|
blas.AXPY(numel_, 1., x_, y_);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
void operator()(const platform::CUDAPlace& place) {
|
|
|
|
platform::CUDADeviceContext* ctx =
|
|
|
|
dynamic_cast<platform::CUDADeviceContext*>(
|
|
|
|
platform::DeviceContextPool::Instance().Get(place));
|
|
|
|
auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
|
|
|
|
blas.AXPY(numel_, 1., x_, y_);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void operator()(const platform::CUDAPlace& place) {
|
|
|
|
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// there is NO blas in CUDAPinnedPlace
|
|
|
|
void operator()(const platform::CUDAPinnedPlace& place) {
|
|
|
|
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int64_t numel_;
|
|
|
|
const T* x_;
|
|
|
|
T* y_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
void AddTo(Variable* src, Variable* dst, platform::Place place) {
|
|
|
|
framework::Tensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
|
|
|
|
framework::Tensor* src_tensor = src->GetMutable<framework::LoDTensor>();
|
|
|
|
|
|
|
|
// FIXME(minqiyang): loss_grad op will pass a zero grad of label
|
|
|
|
// ugly fix for it
|
|
|
|
if (src_tensor->numel() == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
|
|
|
|
"dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
|
|
|
|
src_tensor->numel());
|
|
|
|
|
|
|
|
detail::TensorAddToFunctor<float> func(
|
|
|
|
src_tensor->numel(), src_tensor->data<float>(),
|
|
|
|
dst_tensor->mutable_data<float>(place));
|
|
|
|
boost::apply_visitor(func, place);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddGradBySort(BackwardSumMap* bck_map, VarBase* target) {
|
|
|
|
PADDLE_ENFORCE(bck_map->find(target) != bck_map->end(),
|
|
|
|
"Can't find %s in backward grad map", target->Name());
|
|
|
|
std::pair<platform::Place, std::vector<std::pair<int, VarBase*>>>& current =
|
|
|
|
bck_map->at(target);
|
|
|
|
std::sort(
|
|
|
|
current.second.begin(), current.second.end(),
|
|
|
|
[](const std::pair<int, VarBase*>& a, const std::pair<int, VarBase*>& b) {
|
|
|
|
return a.first > b.first;
|
|
|
|
});
|
|
|
|
for (auto& var_pair : current.second) {
|
|
|
|
Variable* origin_grad = target->var_;
|
|
|
|
Variable* grad_to_add = var_pair.second->var_;
|
|
|
|
VLOG(2) << "add origin_grad: " << target->Name();
|
|
|
|
VLOG(2) << "added grad: " << var_pair.second->Name()
|
|
|
|
<< " trace id is: " << var_pair.first;
|
|
|
|
AddTo(grad_to_add, origin_grad, current.first);
|
|
|
|
delete grad_to_add;
|
|
|
|
var_pair.second = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class Autograd {
|
|
|
|
public:
|
|
|
|
Autograd() {}
|
|
|
|
|
|
|
|
void RunBackward(VarBase* var, const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
if (var->IsStopGradient()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
VLOG(3) << "start autograd";
|
|
|
|
bck_map = new BackwardSumMap();
|
|
|
|
grad_ref = new GradientRef();
|
|
|
|
std::deque<OpBase*> ready;
|
|
|
|
ready.push_back(var->PreOp());
|
|
|
|
|
|
|
|
std::map<OpBase*, int> dep_counts =
|
|
|
|
ComputeDepCounts(var->PreOp(), bck_stratedy);
|
|
|
|
|
|
|
|
while (!ready.empty()) {
|
|
|
|
OpBase* ready_op = ready.front();
|
|
|
|
ready.pop_front();
|
|
|
|
std::map<std::string, std::vector<VarBase*>> input_grads =
|
|
|
|
ready_op->ApplyGrad(bck_map, grad_ref, bck_stratedy);
|
|
|
|
|
|
|
|
for (auto it = input_grads.rbegin(); it != input_grads.rend(); ++it) {
|
|
|
|
const std::vector<VarBase*>& ingrads = it->second;
|
|
|
|
for (size_t i = 0; i < ingrads.size(); ++i) {
|
|
|
|
if (!ingrads[i]) continue;
|
|
|
|
if (ready_op->input_vars_[it->first][i]->IsStopGradient()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
OpBase* pre_op = ready_op->pre_ops_[it->first][i];
|
|
|
|
if (!pre_op) continue;
|
|
|
|
|
|
|
|
dep_counts[pre_op] -= 1;
|
|
|
|
PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
|
|
|
|
bool pre_op_ready = dep_counts[pre_op] == 0;
|
|
|
|
if (pre_op_ready) {
|
|
|
|
ready.push_back(pre_op);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ready_op->InvokeBackwardHooks();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::map<OpBase*, int> ComputeDepCounts(
|
|
|
|
OpBase* op, const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
std::map<OpBase*, int> ret;
|
|
|
|
|
|
|
|
std::deque<OpBase*> queue;
|
|
|
|
queue.push_back(op);
|
|
|
|
std::unordered_set<OpBase*> visited;
|
|
|
|
visited.insert(op);
|
|
|
|
while (!queue.empty()) {
|
|
|
|
OpBase* candidate = queue.front();
|
|
|
|
queue.pop_front();
|
|
|
|
if (bck_stratedy.sorted_sum_gradient_) {
|
|
|
|
for (const auto& map : candidate->grad_output_vars_) {
|
|
|
|
for (const auto& it : map) {
|
|
|
|
for (const auto& vb : it.second) {
|
|
|
|
if (grad_ref->find(vb) == grad_ref->end()) {
|
|
|
|
grad_ref->insert(std::make_pair(vb, 1));
|
|
|
|
} else {
|
|
|
|
// add ref count by 1 when we find grad_var can be generated by
|
|
|
|
// one grad_op
|
|
|
|
grad_ref->at(vb) += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto it : candidate->pre_ops_) {
|
|
|
|
for (OpBase* pre_op : it.second) {
|
|
|
|
if (!pre_op) continue;
|
|
|
|
VLOG(2) << "op dep " << candidate->Type() << " trace id "
|
|
|
|
<< candidate->trace_id_ << " <---- " << it.first << " <---- "
|
|
|
|
<< pre_op->Type() << " trace id " << pre_op->trace_id_;
|
|
|
|
if (visited.find(pre_op) == visited.end()) {
|
|
|
|
visited.insert(pre_op);
|
|
|
|
queue.push_back(pre_op);
|
|
|
|
}
|
|
|
|
ret[pre_op] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
BackwardSumMap* bck_map;
|
|
|
|
GradientRef* grad_ref;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
|
|
|
|
const bool blocking) const {
|
|
|
|
PADDLE_ENFORCE(var_->IsInitialized(),
|
|
|
|
"Variable must be initialized when getting numpy tensor");
|
|
|
|
|
|
|
|
// TODO(minqiyang): change this after move unique_name generator to CXX
|
|
|
|
const framework::LoDTensor& self_tensor = var_->Get<framework::LoDTensor>();
|
|
|
|
std::unique_ptr<VarBase> new_var(new VarBase(
|
|
|
|
"Itmp", self_tensor.type(), self_tensor.dims(), dst_place, true, false));
|
|
|
|
framework::LoDTensor* tensor =
|
|
|
|
new_var->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
tensor->set_lod(var_->Get<framework::LoDTensor>().lod());
|
|
|
|
|
|
|
|
if (blocking) {
|
|
|
|
platform::DeviceContext* dev_ctx =
|
|
|
|
platform::DeviceContextPool::Instance().Get(dst_place);
|
|
|
|
|
|
|
|
framework::TensorCopySync(var_->Get<framework::LoDTensor>(), dst_place,
|
|
|
|
tensor);
|
|
|
|
|
|
|
|
dev_ctx->Wait();
|
|
|
|
} else {
|
|
|
|
framework::TensorCopy(var_->Get<framework::LoDTensor>(), dst_place, tensor);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (platform::is_gpu_place(dst_place)) {
|
|
|
|
VLOG(3) << "copy tensor " << Name() << " from gpu";
|
|
|
|
}
|
|
|
|
|
|
|
|
return new_var;
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::LoDTensor& VarBase::GradValue() {
|
|
|
|
VLOG(3) << "get var grad " << Name();
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grads_,
|
|
|
|
"Could not get grad value from no grad variable");
|
|
|
|
return *(grads_->var_->GetMutable<framework::LoDTensor>());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad(
|
|
|
|
BackwardSumMap* bck_map, GradientRef* grad_ref,
|
|
|
|
const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
PADDLE_ENFORCE(!grad_op_descs_.empty() || backward_id_ > 0,
|
|
|
|
"%s has no backward implementation", Type());
|
|
|
|
|
|
|
|
VLOG(3) << "apply op grad: " << Type();
|
|
|
|
std::vector<VarBasePtrMap> tmp_grad_outputs;
|
|
|
|
if (backward_id_ > 0) {
|
|
|
|
VLOG(3) << "py_layer_grad";
|
|
|
|
tmp_grad_outputs.resize(1);
|
|
|
|
tmp_grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] =
|
|
|
|
PyLayer::ApplyGrad(
|
|
|
|
backward_id_,
|
|
|
|
grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]);
|
|
|
|
} else {
|
|
|
|
const size_t grad_op_count = grad_op_descs_.size();
|
|
|
|
|
|
|
|
tmp_grad_outputs.resize(grad_op_count);
|
|
|
|
for (size_t k = 0; k < grad_op_count; ++k) {
|
|
|
|
framework::OpDesc* grad_op_desc = grad_op_descs_[k];
|
|
|
|
auto& grad_output_variable_map = grad_output_vars_[k];
|
|
|
|
|
|
|
|
VLOG(3) << "apply grad op " << grad_op_desc->Type();
|
|
|
|
|
|
|
|
// Allocate tmp grad output variable
|
|
|
|
for (const auto& it : grad_output_variable_map) {
|
|
|
|
auto& outputs = tmp_grad_outputs[k][it.first];
|
|
|
|
outputs.reserve(it.second.size());
|
|
|
|
for (size_t i = 0; i < it.second.size(); ++i) {
|
|
|
|
VarBase* origin_grad_var_base = it.second[i];
|
|
|
|
|
|
|
|
// Allocate a new variable
|
|
|
|
VarBase* tmp_grad_var_base = new VarBase(
|
|
|
|
string::Sprintf("%s@IGrad", origin_grad_var_base->Name()),
|
|
|
|
origin_grad_var_base->DataType(), origin_grad_var_base->Dims(),
|
|
|
|
place_, true, false);
|
|
|
|
outputs.emplace_back(tmp_grad_var_base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// No need to do compile time infer shape here.
|
|
|
|
// grad_op_desc_->InferShape(*block_);
|
|
|
|
// grad_op_desc->InferVarType(block_);
|
|
|
|
|
|
|
|
std::unique_ptr<framework::OperatorBase> opbase =
|
|
|
|
framework::OpRegistry::CreateOp(*grad_op_desc);
|
|
|
|
|
|
|
|
auto& info = framework::OpInfoMap::Instance().Get(grad_op_desc->Type());
|
|
|
|
if (info.infer_var_type_) {
|
|
|
|
RuntimeInferVarTypeContext infer_var_type_ctx(
|
|
|
|
&grad_input_vars_[k], &tmp_grad_outputs[k], &attrs_);
|
|
|
|
info.infer_var_type_(&infer_var_type_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::OperatorWithKernel* op_kernel =
|
|
|
|
dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
|
|
|
|
|
|
|
|
// Run grad op
|
|
|
|
framework::VariableValueMap grad_invars_map;
|
|
|
|
framework::VariableValueMap grad_outvars_map;
|
|
|
|
|
|
|
|
for (const auto& it : grad_input_vars_[k]) {
|
|
|
|
auto& grad_invars = grad_invars_map[it.first];
|
|
|
|
grad_invars.reserve(it.second.size());
|
|
|
|
for (const VarBase* grad_inp : it.second) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grad_inp->var_, "op %s input %s nullptr",
|
|
|
|
grad_op_desc->Type(), grad_inp->Name());
|
|
|
|
|
|
|
|
grad_invars.emplace_back(grad_inp->var_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (const auto& it : tmp_grad_outputs[k]) {
|
|
|
|
auto& grad_outvars = grad_outvars_map[it.first];
|
|
|
|
grad_outvars.reserve(it.second.size());
|
|
|
|
for (VarBase* grad_out : it.second) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grad_out->var_, "op %s output %s nullptr",
|
|
|
|
grad_op_desc->Type(), grad_out->Name());
|
|
|
|
|
|
|
|
grad_outvars.emplace_back(grad_out->var_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::RuntimeContext ctx(grad_invars_map, grad_outvars_map);
|
|
|
|
framework::Scope scope;
|
|
|
|
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
|
|
|
|
p.op.RuntimeInferShape(scope, place_, ctx);
|
|
|
|
p.func(
|
|
|
|
framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx, nullptr));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add tmp grad outputs to original grad vars
|
|
|
|
for (size_t k = 0; k < grad_output_vars_.size(); ++k) {
|
|
|
|
for (const auto& it : grad_output_vars_[k]) {
|
|
|
|
auto& outputs = tmp_grad_outputs[k][it.first];
|
|
|
|
const auto& origin_outputs = it.second;
|
|
|
|
PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
|
|
// track outputs used by sum
|
|
|
|
if (bck_stratedy.sorted_sum_gradient_) {
|
|
|
|
#ifndef PADDLE_WITH_CUDA
|
|
|
|
VLOG(2) << "origin_outputs is : " << origin_outputs[i]->Name() << " ";
|
|
|
|
VLOG(2) << origin_outputs[i]
|
|
|
|
->var_->GetMutable<framework::LoDTensor>()
|
|
|
|
->data<float>()[0];
|
|
|
|
VLOG(2) << "outputs is : " << outputs[i]->Name() << " ";
|
|
|
|
VLOG(2) << outputs[i]
|
|
|
|
->var_->GetMutable<framework::LoDTensor>()
|
|
|
|
->data<float>()[0];
|
|
|
|
#endif
|
|
|
|
if (bck_map->find(origin_outputs[i]) != bck_map->end()) {
|
|
|
|
VLOG(2) << "add sub grad to " << origin_outputs[i]->Name();
|
|
|
|
bck_map->at(origin_outputs[i])
|
|
|
|
.second.emplace_back(
|
|
|
|
std::pair<int, VarBase*>(this->trace_id_, outputs[i]));
|
|
|
|
} else {
|
|
|
|
VLOG(2) << "insert new map for " << origin_outputs[i]->Name();
|
|
|
|
std::pair<platform::Place, std::vector<std::pair<int, VarBase*>>>
|
|
|
|
tmp(place_, {std::make_pair(this->trace_id_, outputs[i])});
|
|
|
|
bck_map->insert(std::make_pair(origin_outputs[i], tmp));
|
|
|
|
}
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(grad_ref->find(origin_outputs[i]) != grad_ref->end(),
|
|
|
|
"Can't find %s in grad_reference count map",
|
|
|
|
origin_outputs[i]->Name());
|
|
|
|
PADDLE_ENFORCE(grad_ref->at(origin_outputs[i]) >= 1,
|
|
|
|
"Backward error when calculate grad reference");
|
|
|
|
if (grad_ref->at(origin_outputs[i]) > 1) {
|
|
|
|
VLOG(2) << "remove ref for " << origin_outputs[i]->Name();
|
|
|
|
grad_ref->at(origin_outputs[i])--;
|
|
|
|
} else {
|
|
|
|
VLOG(2) << "Add grad for: " << origin_outputs[i]->Name();
|
|
|
|
AddGradBySort(bck_map, origin_outputs[i]);
|
|
|
|
grad_ref->at(origin_outputs[i])--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
framework::Variable* grad = outputs[i]->var_;
|
|
|
|
framework::Variable* orig_grad = origin_outputs[i]->var_;
|
|
|
|
VLOG(2) << "AddTo Called with orig_grad is: "
|
|
|
|
<< origin_outputs[i]->name_ << " Grad to be added is "
|
|
|
|
<< outputs[i]->name_;
|
|
|
|
AddTo(grad, orig_grad, place_);
|
|
|
|
delete grad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return input_vars_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OpBase::InvokeBackwardHooks() {
|
|
|
|
VLOG(3) << "call backward hooks, hooks num: " << backward_hooks_.size();
|
|
|
|
|
|
|
|
// call backward hooks
|
|
|
|
for (py::object& callable : backward_hooks_) {
|
|
|
|
callable(this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void OpBase::RegisterBackwardHooks(const py::object& callable, bool front) {
|
|
|
|
VLOG(3) << "Register backward hooks " << trace_id_;
|
|
|
|
|
|
|
|
// TODO(minqiyang): check the callable format
|
|
|
|
if (front) {
|
|
|
|
backward_hooks_.insert(backward_hooks_.begin(), callable);
|
|
|
|
} else {
|
|
|
|
backward_hooks_.push_back(callable);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
if (!pre_op_) return;
|
|
|
|
|
|
|
|
VLOG(3) << "start backward";
|
|
|
|
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
operators::math::set_constant(
|
|
|
|
*(platform::DeviceContextPool::Instance().Get(
|
|
|
|
var_->GetMutable<framework::LoDTensor>()->place())),
|
|
|
|
grads_t, 1.0);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
grads_ ==
|
|
|
|
pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
|
|
|
|
Autograd().RunBackward(this, bck_stratedy);
|
|
|
|
}
|
|
|
|
|
|
|
|
void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
|
|
|
|
py_funcs_[func_id] = py_func;
|
|
|
|
}
|
|
|
|
|
|
|
|
int PyLayer::NumFuncs() { return py_funcs_.size(); }
|
|
|
|
|
|
|
|
std::vector<framework::Variable*> PyLayer::Apply(
|
|
|
|
int func_id, const std::vector<VarBase*>& inputs) {
|
|
|
|
PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
|
|
|
|
return CallPythonFunc(py_funcs_[func_id], inputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<VarBase*> PyLayer::ApplyGrad(int func_id,
|
|
|
|
const std::vector<VarBase*>& inputs) {
|
|
|
|
PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
|
|
|
|
auto rets = CallPythonFunc(py_funcs_[func_id], inputs);
|
|
|
|
|
|
|
|
std::vector<VarBase*> outs;
|
|
|
|
outs.reserve(rets.size());
|
|
|
|
for (size_t i = 0U; i != rets.size(); ++i) {
|
|
|
|
outs.emplace_back(new VarBase(
|
|
|
|
string::Sprintf("%s_out_%d", framework::GradVarName(PyLayer::kFwdOut),
|
|
|
|
i),
|
|
|
|
rets[i], nullptr, true));
|
|
|
|
}
|
|
|
|
|
|
|
|
return outs;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<framework::Variable*> PyLayer::CallPythonFunc(
|
|
|
|
const py::object& callable, const std::vector<VarBase*>& ins) {
|
|
|
|
py::gil_scoped_acquire guard;
|
|
|
|
py::tuple in_args(ins.size());
|
|
|
|
for (size_t i = 0; i < ins.size(); ++i) {
|
|
|
|
const framework::LoDTensor& t = ins[i]->var_->Get<framework::LoDTensor>();
|
|
|
|
in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr);
|
|
|
|
}
|
|
|
|
VLOG(3) << "pyfunc in " << py::len(in_args);
|
|
|
|
|
|
|
|
// TODO(panyx0718): Who owns the returned LoDTensor.
|
|
|
|
auto ret = callable(in_args);
|
|
|
|
auto ret_tuple = py::cast<py::tuple>(ret);
|
|
|
|
size_t ret_num = py::len(ret_tuple);
|
|
|
|
std::vector<framework::Variable*> outs;
|
|
|
|
outs.reserve(ret_num);
|
|
|
|
VLOG(3) << "pyfunc out " << ret_num;
|
|
|
|
for (size_t i = 0; i < ret_num; ++i) {
|
|
|
|
try {
|
|
|
|
auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
|
|
|
|
"Output tensor %d should not be nullptr", i);
|
|
|
|
auto* var = new framework::Variable();
|
|
|
|
auto* tensor = var->GetMutable<framework::LoDTensor>();
|
|
|
|
tensor->ShareDataWith(*py_out_tensor);
|
|
|
|
tensor->set_lod(py_out_tensor->lod());
|
|
|
|
outs.emplace_back(var);
|
|
|
|
} catch (py::cast_error&) {
|
|
|
|
PADDLE_THROW("The %d-th output must be LoDTensor", i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return outs;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace imperative
|
|
|
|
} // namespace paddle
|