|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
using framework::DataLayout;
|
|
|
|
using mkldnn::memory;
|
|
|
|
using mkldnn::primitive;
|
|
|
|
using mkldnn::reorder;
|
|
|
|
using mkldnn::stream;
|
|
|
|
using platform::to_void_cast;
|
|
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
|
|
|
|
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
|
|
|
|
public:
|
|
|
|
ConvMKLDNNHandler(
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
|
|
|
|
const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
|
|
|
|
const std::string& base_key)
|
|
|
|
: platform::MKLDNNHandler(dev_ctx, engine, base_key) {
|
|
|
|
conv_pd_ = conv_pd;
|
|
|
|
}
|
|
|
|
|
|
|
|
ConvMKLDNNHandler(
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
|
|
|
|
conv_bwd_data_pd,
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
|
|
|
|
conv_bwd_weights_pd,
|
|
|
|
const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
|
|
|
|
const std::string& base_key)
|
|
|
|
: platform::MKLDNNHandler(dev_ctx, engine, base_key),
|
|
|
|
conv_pd_(conv_pd),
|
|
|
|
conv_bwd_weights_pd_(conv_bwd_weights_pd),
|
|
|
|
conv_bwd_data_pd_(conv_bwd_data_pd) {
|
|
|
|
// If we are in Grad operatgor then update a key with BWD suffix to
|
|
|
|
// distinguish from FWD memory primitives
|
|
|
|
key_ += "-BWD";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
|
|
|
|
auto user_pd = user_memory_p->get_primitive_desc();
|
|
|
|
return this->AcquireMemory(src_pd, user_pd, user_memory_p,
|
|
|
|
"@weights-src_mem_p", pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
|
|
|
|
auto user_pd = user_memory_p->get_primitive_desc();
|
|
|
|
return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
|
|
|
|
"@weights-diff_dst_mem_p", pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
|
|
|
|
void* ptr) {
|
|
|
|
return this->AcquireMemoryFromPrimitive(
|
|
|
|
conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
|
|
|
|
"@diff_weights_mem_p");
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
|
|
|
|
auto user_pd = user_memory_p->get_primitive_desc();
|
|
|
|
return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
|
|
|
|
"@data-diff_dst_mem_p", pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
|
|
|
|
auto user_pd = user_weights_memory_p->get_primitive_desc();
|
|
|
|
return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
|
|
|
|
"@data-weights_mem_p", pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
|
|
|
|
void* ptr) {
|
|
|
|
return this->AcquireMemoryFromPrimitive(
|
|
|
|
conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
|
|
|
|
return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
|
|
|
|
"@dst_mem_p");
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto src_pd = conv_pd_->src_primitive_desc();
|
|
|
|
auto user_pd = user_memory_p->get_primitive_desc();
|
|
|
|
return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
|
|
|
|
pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
|
|
|
|
const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
|
|
|
|
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
|
|
|
|
auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
|
|
|
|
auto weights_pd = conv_pd_->weights_primitive_desc();
|
|
|
|
return this->AcquireMemory(weights_pd, user_weights_pd,
|
|
|
|
user_weights_memory_p, "@weights_mem_p",
|
|
|
|
pipeline);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
|
|
|
|
std::shared_ptr<mkldnn::memory> src_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> weights_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> dst_memory_p) {
|
|
|
|
auto prim_key = key_ + "@conv_p";
|
|
|
|
auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
|
|
|
|
dev_ctx_.GetBlob(prim_key));
|
|
|
|
PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
|
|
|
|
"Fail to find convolution primitive in device context");
|
|
|
|
if (conv_p == nullptr) {
|
|
|
|
conv_p = std::make_shared<mkldnn::convolution_forward>(
|
|
|
|
*conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
|
|
|
|
*(dst_memory_p.get()));
|
|
|
|
|
|
|
|
dev_ctx_.SetBlob(prim_key, conv_p);
|
|
|
|
} else {
|
|
|
|
is_reusing_ = true;
|
|
|
|
}
|
|
|
|
return conv_p;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_weights>
|
|
|
|
AcquireConvolutionBackwardWeights(
|
|
|
|
std::shared_ptr<mkldnn::memory> src_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
|
|
|
|
auto prim_key = key_ + "@conv_bwd_weights_p";
|
|
|
|
auto conv_bwd_weights_p =
|
|
|
|
std::static_pointer_cast<mkldnn::convolution_backward_weights>(
|
|
|
|
dev_ctx_.GetBlob(prim_key));
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
(conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
|
|
|
|
"Fail to find convolution bwd weights primitive in device context");
|
|
|
|
if (conv_bwd_weights_p == nullptr) {
|
|
|
|
// create backward conv primitive for weights
|
|
|
|
conv_bwd_weights_p =
|
|
|
|
std::make_shared<mkldnn::convolution_backward_weights>(
|
|
|
|
*conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
|
|
|
|
*diff_weights_memory_p);
|
|
|
|
dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
|
|
|
|
} else {
|
|
|
|
is_reusing_ = true;
|
|
|
|
}
|
|
|
|
return conv_bwd_weights_p;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_data>
|
|
|
|
AcquireConvolutionBackwardData(
|
|
|
|
std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> weights_memory_p,
|
|
|
|
std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
|
|
|
|
auto prim_key = key_ + "@conv_bwd_data_p";
|
|
|
|
auto conv_bwd_data_p =
|
|
|
|
std::static_pointer_cast<mkldnn::convolution_backward_data>(
|
|
|
|
dev_ctx_.GetBlob(prim_key));
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
(conv_bwd_data_p != nullptr) || (is_reusing_ == false),
|
|
|
|
"Fail to find convolution bwd data primitive in device context");
|
|
|
|
if (conv_bwd_data_p == nullptr) {
|
|
|
|
conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
|
|
|
|
*conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
|
|
|
|
*diff_src_memory_p);
|
|
|
|
dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
|
|
|
|
} else {
|
|
|
|
is_reusing_ = true;
|
|
|
|
}
|
|
|
|
return conv_bwd_data_p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generate keys for storing/retriving primitives for this operator
|
|
|
|
// TODO(jczaja): Make hashing function more optimial
|
|
|
|
static std::string GetHash(memory::dims& input_dims, // NOLINT
|
|
|
|
memory::dims& weights_dims, // NOLINT
|
|
|
|
std::vector<int>& strides, // NOLINT
|
|
|
|
std::vector<int>& paddings, // NOLINT
|
|
|
|
std::vector<int>& dilations, // NOLINT
|
|
|
|
int groups, const std::string& suffix) {
|
|
|
|
return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
|
|
|
|
dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
|
|
|
|
suffix;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
|
|
|
|
conv_bwd_weights_pd_;
|
|
|
|
std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
|
|
|
|
conv_bwd_data_pd_;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
|
|
"It must use CPUPlace.");
|
|
|
|
|
|
|
|
auto& dev_ctx =
|
|
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
|
|
input->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for Input tensor");
|
|
|
|
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
|
|
|
|
filter->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for Filter tensor");
|
|
|
|
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
|
|
|
|
// TODO(pzelazko-intel) add support for group convolution and dilation
|
|
|
|
PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
|
|
"dilation in convolution is not implemented yet");
|
|
|
|
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(input->dims().size() == 4,
|
|
|
|
"Input must be with 4 dimensions, i.e. NCHW");
|
|
|
|
PADDLE_ENFORCE(filter->dims().size() == 4,
|
|
|
|
"Filter must be with 4 dimensions, i.e. OIHW");
|
|
|
|
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
|
|
std::vector<int> weights_tz =
|
|
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
|
|
|
|
// Get unique name for storing MKLDNN primitives
|
|
|
|
const std::string key = ConvMKLDNNHandler::GetHash(
|
|
|
|
src_tz, weights_tz, strides, paddings, dilations, groups,
|
|
|
|
ctx.op().Output("Output"));
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
|
|
|
|
std::vector<primitive> pipeline;
|
|
|
|
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
|
|
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
|
|
|
|
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
*/
|
|
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
|
|
auto chosen_memory_format =
|
|
|
|
platform::data_format_to_memory_format(data_format);
|
|
|
|
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
|
|
|
|
// create a conv primitive descriptor and save it for usage in backward
|
|
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
|
|
|
|
ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
|
|
|
|
mkldnn_engine);
|
|
|
|
// Save conv_pd/src_memory/weights_memory for backward pass
|
|
|
|
dev_ctx.SetBlob(key_conv_pd, conv_pd);
|
|
|
|
|
|
|
|
ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
|
|
|
|
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
|
|
auto user_src_memory_p =
|
|
|
|
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
|
|
user_weights_md, to_void_cast<T>(filter_data));
|
|
|
|
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
|
|
auto src_memory_p =
|
|
|
|
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
|
|
|
|
user_weights_memory_p, pipeline);
|
|
|
|
auto dst_memory_p =
|
|
|
|
handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
|
|
|
|
|
|
|
|
// create convolution op primitive
|
|
|
|
auto conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
|
|
|
|
dst_memory_p);
|
|
|
|
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
|
|
pipeline.push_back(*conv_p);
|
|
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
|
|
output->set_format(GetMKLDNNFormat(*dst_memory_p));
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
|
|
|
|
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
|
|
|
|
const memory::desc& dst, const std::vector<int>& strides,
|
|
|
|
const std::vector<int>& paddings,
|
|
|
|
const mkldnn::engine& engine) const {
|
|
|
|
memory::dims stride_dims = {strides[0], strides[1]};
|
|
|
|
memory::dims padding_dims = {paddings[0], paddings[1]};
|
|
|
|
|
|
|
|
auto conv_desc = mkldnn::convolution_forward::desc(
|
|
|
|
mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
|
|
|
|
dst, stride_dims, padding_dims, padding_dims,
|
|
|
|
mkldnn::padding_kind::zero);
|
|
|
|
|
|
|
|
auto p_conv_pd =
|
|
|
|
new mkldnn::convolution_forward::primitive_desc(conv_desc, engine);
|
|
|
|
|
|
|
|
return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
|
|
|
|
p_conv_pd);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
|
|
"It must use CPUPlace.");
|
|
|
|
|
|
|
|
auto& dev_ctx =
|
|
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
|
|
|
|
const Tensor* input = ctx.Input<Tensor>("Input");
|
|
|
|
const Tensor* filter = ctx.Input<Tensor>("Filter");
|
|
|
|
const Tensor* output = ctx.Input<Tensor>("Output");
|
|
|
|
const Tensor* output_grad =
|
|
|
|
ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
|
|
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
|
|
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
|
|
input->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for Input tensor");
|
|
|
|
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
|
|
|
|
filter->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for Filter tensor");
|
|
|
|
PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
|
|
|
|
output->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for Output tensor");
|
|
|
|
PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
|
|
|
|
output_grad->format() != memory::format::format_undef,
|
|
|
|
"Wrong layout/format set for output_grad tensor");
|
|
|
|
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
|
|
T* input_grad_data = nullptr;
|
|
|
|
T* filter_grad_data = nullptr;
|
|
|
|
|
|
|
|
if (input_grad) {
|
|
|
|
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
}
|
|
|
|
if (filter_grad) {
|
|
|
|
filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
|
|
std::vector<int> weights_tz =
|
|
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
|
|
// as well as attributes of primitive to be created
|
|
|
|
// This name will be used as key when saving info into device context
|
|
|
|
const std::string key =
|
|
|
|
ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
|
|
|
|
dilations, groups, ctx.op().Input("Output"));
|
|
|
|
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
std::vector<primitive> pipeline;
|
|
|
|
|
|
|
|
// Create user memory descriptors
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
|
|
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
|
|
|
|
auto user_diff_dst_md = platform::MKLDNNMemDesc(
|
|
|
|
{dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
|
|
|
|
|
|
|
|
/* create memory descriptor for conv backward without specified format
|
|
|
|
* ('any') which lets a primitive (conv backward in this case) choose
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
*/
|
|
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
|
|
auto chosen_memory_format =
|
|
|
|
platform::data_format_to_memory_format(data_format);
|
|
|
|
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto diff_src_md = platform::MKLDNNMemDesc(
|
|
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto diff_weights_md = platform::MKLDNNMemDesc(
|
|
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
auto diff_dst_md = platform::MKLDNNMemDesc(
|
|
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
|
|
|
|
// Retrieve conv_pd from device context
|
|
|
|
auto conv_pd =
|
|
|
|
std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
|
|
|
|
dev_ctx.GetBlob(key_conv_pd));
|
|
|
|
PADDLE_ENFORCE(conv_pd != nullptr,
|
|
|
|
"Fail to find conv_pd in device context");
|
|
|
|
|
|
|
|
// create backward convolution weights primitive descriptor
|
|
|
|
auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
|
|
|
|
mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
|
|
|
|
strides, paddings, paddings, mkldnn::padding_kind::zero);
|
|
|
|
auto conv_bwd_weights_pd =
|
|
|
|
std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
|
|
|
|
conv_bwd_weights_desc, mkldnn_engine, *conv_pd);
|
|
|
|
|
|
|
|
// create backward convolution data primitive descriptor
|
|
|
|
auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
|
|
|
|
mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
|
|
|
|
strides, paddings, paddings, mkldnn::padding_kind::zero);
|
|
|
|
auto conv_bwd_data_pd =
|
|
|
|
std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
|
|
|
|
conv_bwd_data_desc, mkldnn_engine, *conv_pd);
|
|
|
|
|
|
|
|
ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
|
|
|
|
dev_ctx, mkldnn_engine, key);
|
|
|
|
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
|
|
auto user_src_memory_p =
|
|
|
|
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
|
|
user_weights_md, to_void_cast<T>(filter_data));
|
|
|
|
auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
|
|
|
|
user_diff_dst_md, to_void_cast<T>(output_grad_data));
|
|
|
|
|
|
|
|
// create backward conv primitive for weights
|
|
|
|
if (filter_grad) {
|
|
|
|
auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
|
|
|
|
user_src_memory_p, pipeline);
|
|
|
|
|
|
|
|
auto diff_dst_memory_4filter_p =
|
|
|
|
handler.AcquireDiffDstMemoryFromWeightsPrimitive(
|
|
|
|
user_diff_dst_memory_p, pipeline);
|
|
|
|
|
|
|
|
auto diff_weights_memory_p =
|
|
|
|
handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
|
|
|
|
reinterpret_cast<void*>(filter_grad_data));
|
|
|
|
|
|
|
|
auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
|
|
|
|
src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);
|
|
|
|
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
|
|
pipeline.push_back(*conv_bwd_weights_p);
|
|
|
|
|
|
|
|
filter_grad->set_layout(DataLayout::kMKLDNN);
|
|
|
|
filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (input_grad) {
|
|
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
|
|
|
|
user_weights_memory_p, pipeline);
|
|
|
|
|
|
|
|
auto diff_dst_memory_4data_p =
|
|
|
|
handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
|
|
|
|
pipeline);
|
|
|
|
|
|
|
|
auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
|
|
|
|
reinterpret_cast<void*>(input_grad_data));
|
|
|
|
|
|
|
|
auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
|
|
|
|
diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);
|
|
|
|
|
|
|
|
pipeline.push_back(*conv_bwd_data_p);
|
|
|
|
|
|
|
|
input_grad->set_layout(DataLayout::kMKLDNN);
|
|
|
|
input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
|
|
|
|
}
|
|
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
} // Compute()
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
|
|
|
REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
|
|
|
|
ops::ConvMKLDNNOpKernel<float>);
|
|
|
|
|
|
|
|
REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
|
|
ops::ConvMKLDNNGradOpKernel<float>);
|