You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/parallel_executor.py

153 lines
5.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import core
import multiprocessing
import framework
import executor
__all__ = ['ParallelExecutor']
class ParallelExecutor(object):
def __init__(self,
use_cuda,
loss_name=None,
main_program=None,
num_threads=None,
allow_op_delay=False,
share_vars_from=None):
"""
ParallelExecutor can run program in parallel.
Args:
use_cuda(bool): Whether to use CUDA or not.
loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, defalut False.
share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor.
Returns:
A ParallelExecutor object.
Raises:
TypeError: If share_vars_from is provided, but not ParallelExecutor
object.
Examples:
.. code-block:: python
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name)
test_exe = fluid.ParallelExecutor(
use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict)
"""
self._places = []
self._act_places = []
if use_cuda:
for i in xrange(core.get_cuda_device_count()):
p = core.Place()
self._act_places.append(core.CUDAPlace(i))
p.set_place(self._act_places[-1])
self._places.append(p)
else:
for i in xrange(multiprocessing.cpu_count()):
p = core.Place()
self._act_places.append(core.CPUPlace(i))
p.set_place(self._act_places[-1])
self._places.append(p)
assert self._places, "no place for execution"
if num_threads is None:
if use_cuda:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
num_threads = len(self._places)
else:
num_threads = min(
len(self._places) * 2, multiprocessing.cpu_count())
main = main_program
main = main if main else framework.default_main_program()
scope = executor.global_scope()
if share_vars_from and not isinstance(share_vars_from,
ParallelExecutor):
raise TypeError("share_vars_from must be ParallelExecutor.")
local_scopes = share_vars_from.executor.local_scopes(
) if share_vars_from else []
7 years ago
self.persistable_vars = [
v.name
for v in filter(lambda var: \
var.persistable and var.type != core.VarDesc.VarType.RAW,
main.list_vars())
]
self.executor = core.ParallelExecutor(
num_threads,
True if use_cuda else False, # use_event
self._places,
set([
p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient
]),
7 years ago
set(self.persistable_vars),
main.desc,
loss_name if loss_name else '',
scope,
local_scopes,
allow_op_delay)
self.scope = scope
def run(self, fetch_list, feed={}, feed_dict={}):
"""
:param fetch_list: A list of variable names that will be fetched.
:param feed: A dict mapping for feed variable name to LoDTensor
or numpy array.
:return: fetched value list.
"""
if feed == {}:
feed = feed_dict
if not isinstance(feed, dict):
raise TypeError("feed should be a dict")
7 years ago
feed_tensor_dict = {}
for i, feed_name in enumerate(feed):
feed_tensor = feed[feed_name]
if not isinstance(feed_tensor, core.LoDTensor):
feed_tensor = core.LoDTensor()
feed_tensor.set(feed[feed_name], self._act_places[0])
feed_tensor_dict[feed_name] = feed_tensor
fetch_var_name = '@FETCHED_VAR_NAME@'
self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict)
arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
return [arr[i] for i in range(len(arr))]
7 years ago
def bcast_params(self):
self.executor.bcast_params(set(self.persistable_vars))