You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv2d_op.py

1396 lines
45 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
from op_test import OpTest
from paddle.fluid import Program, program_guard
def conv2d_forward_naive(input,
filter,
group,
conv_param,
padding_algorithm='EXPLICIT',
data_format='NCHW'):
if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
"It can only be 'SAME' or 'VALID'." %
str(padding_algorithm))
if data_format not in ["NCHW", "NHWC"]:
raise ValueError("Unknown Attr(data_format): '%s' ."
"It can only be 'NCHW' or 'NHWC'." % str(data_format))
channel_last = (data_format == "NHWC")
if channel_last:
input = np.transpose(input, [0, 3, 1, 2])
in_n, in_c, in_h, in_w = input.shape
f_n, f_c, f_h, f_w = filter.shape
out_n = in_n
out_c = f_n
assert f_c * group == in_c
assert np.mod(out_c, group) == 0
sub_out_c = out_c // group
sub_f_n = f_n // group
stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
'dilation']
# update pad and dilation
def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
padding = []
for input_size, filter_size, stride_size in zip(input_shape, pool_size,
pool_stride):
out_size = int((input_size + stride_size - 1) / stride_size)
pad_sum = np.max((
(out_size - 1) * stride_size + filter_size - input_size, 0))
pad_0 = int(pad_sum / 2)
pad_1 = int(pad_sum - pad_0)
padding.append(pad_0)
padding.append(pad_1)
return padding
ksize = filter.shape[2:4]
if padding_algorithm == "VALID":
pad = [0, 0, 0, 0]
elif padding_algorithm == "SAME":
dilation = [1, 1]
input_data_shape = input.shape[2:4]
pad = _get_padding_with_SAME(input_data_shape, ksize, stride)
pad_h_0, pad_h_1 = pad[0], pad[0]
pad_w_0, pad_w_1 = pad[1], pad[1]
if len(pad) == 4:
pad_h_0, pad_h_1 = pad[0], pad[1]
pad_w_0, pad_w_1 = pad[2], pad[3]
out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
(f_h - 1) + 1)) // stride[0]
out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
(f_w - 1) + 1)) // stride[1]
out = np.zeros((out_n, out_c, out_h, out_w))
d_bolck_h = (dilation[0] * (f_h - 1) + 1)
d_bolck_w = (dilation[1] * (f_w - 1) + 1)
input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
(pad_w_0, pad_w_1)),
mode='constant',
constant_values=0)
filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
1]] = filter
for i in range(out_h):
for j in range(out_w):
for g in range(group):
8 years ago
input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c,
i * stride[0]:i * stride[0] + d_bolck_h,
j * stride[1]:j * stride[1] + d_bolck_w]
8 years ago
f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
# sub_f_n == sub_out_c
for k in range(sub_out_c):
# Multiplication of Corresponding Elements, then sum all
8 years ago
out[:, g * sub_out_c + k, i, j] = \
np.sum(input_pad_masked * f_sub[k, :, :, :],
axis=(1, 2, 3))
if channel_last:
out = np.transpose(out, [0, 2, 3, 1])
return out, in_n, out_h, out_w, out_c
def create_test_cudnn_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNCase(parent):
def init_kernel_type(self):
self.use_cudnn = True
cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
TestCUDNNCase.__name__ = cls_name
globals()[cls_name] = TestCUDNNCase
def create_test_cudnn_fp16_class(parent, grad_check=True):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestConv2DCUDNNFp16(parent):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
def test_check_grad_no_filter(self):
place = core.CUDAPlace(0)
if core.is_float16_supported(place) and grad_check:
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
place = core.CUDAPlace(0)
if core.is_float16_supported(place) and grad_check:
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Input']))
cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
TestConv2DCUDNNFp16.__name__ = cls_name
globals()[cls_name] = TestConv2DCUDNNFp16
def create_test_channel_last_class(parent):
class TestChannelLastCase(parent):
def init_data_format(self):
self.data_format = "NHWC"
def init_test_case_2(self):
N, C, H, W = self.input_size
self.input_size = [N, H, W, C]
cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
TestChannelLastCase.__name__ = cls_name
globals()[cls_name] = TestChannelLastCase
def create_test_cudnn_channel_last_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCudnnChannelLastCase(parent):
def init_kernel_type(self):
self.use_cudnn = True
def init_data_format(self):
self.data_format = "NHWC"
def init_test_case_2(self):
N, C, H, W = self.input_size
self.input_size = [N, H, W, C]
cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
TestCudnnChannelLastCase.__name__ = cls_name
globals()[cls_name] = TestCudnnChannelLastCase
def create_test_padding_SAME_class(parent):
class TestPaddingSMAECase(parent):
def init_paddings(self):
self.pad = [0, 0]
self.padding_algorithm = "SAME"
cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
TestPaddingSMAECase.__name__ = cls_name
globals()[cls_name] = TestPaddingSMAECase
def create_test_padding_VALID_class(parent):
class TestPaddingVALIDCase(parent):
def init_paddings(self):
self.pad = [1, 1]
self.padding_algorithm = "VALID"
cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
TestPaddingVALIDCase.__name__ = cls_name
globals()[cls_name] = TestPaddingVALIDCase
def create_test_cudnn_padding_SAME_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNPaddingSMAECase(parent):
def init_kernel_type(self):
self.use_cudnn = True
def init_paddings(self):
self.pad = [1, 1]
self.padding_algorithm = "SAME"
cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
TestCUDNNPaddingSMAECase.__name__ = cls_name
globals()[cls_name] = TestCUDNNPaddingSMAECase
def create_test_cudnn_padding_VALID_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNPaddingVALIDCase(parent):
def init_kernel_type(self):
self.use_cudnn = True
def init_paddings(self):
self.pad = [1, 1]
self.padding_algorithm = "VALID"
cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
TestCUDNNPaddingVALIDCase.__name__ = cls_name
globals()[cls_name] = TestCUDNNPaddingVALIDCase
class TestConv2dOp(OpTest):
def setUp(self):
7 years ago
self.op_type = "conv2d"
self.use_cudnn = False
self.exhaustive_search = False
self.use_cuda = False
self.use_mkldnn = False
self.fuse_relu_before_depthwise_conv = False
self.data_format = "AnyLayout"
self.dtype = np.float32
7 years ago
self.init_kernel_type()
8 years ago
self.init_group()
7 years ago
self.init_dilation()
8 years ago
self.init_test_case()
conv2d_param = {
'stride': self.stride,
'pad': self.pad,
'dilation': self.dilations
}
input = np.random.random(self.input_size).astype(self.dtype)
if not self.has_cuda():
self.fuse_relu_before_depthwise_conv = False
if self.fuse_relu_before_depthwise_conv:
input = input - 0.5
input -= (input < 0) * 0.1
input += (input >= 0) * 0.1
input2 = np.maximum(input, 0.0)
else:
input2 = input
filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
conv2d_param)
output = output.astype(self.dtype)
self.inputs = {
7 years ago
'Input': OpTest.np_dtype_to_fluid_dtype(input),
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
}
self.attrs = {
8 years ago
'strides': self.stride,
'paddings': self.pad,
8 years ago
'groups': self.groups,
'dilations': self.dilations,
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn,
'data_format': self.data_format,
'fuse_relu_before_depthwise_conv':
self.fuse_relu_before_depthwise_conv,
'exhaustive_search': self.exhaustive_search
}
self.outputs = {'Output': output}
def has_cuda(self):
return core.is_compiled_with_cuda() and (self.use_cudnn or
self.use_cuda)
def test_check_output(self):
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self.check_output_with_place(
place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
def test_check_grad(self):
7 years ago
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self.check_grad_with_place(
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
place, {'Input', 'Filter'},
'Output',
max_relative_error=0.02,
check_dygraph=(self.use_mkldnn == False))
def test_check_grad_no_filter(self):
7 years ago
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.02,
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
no_grad_set=set(['Filter']),
check_dygraph=(self.use_mkldnn == False))
def test_check_grad_no_input(self):
7 years ago
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.02,
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
no_grad_set=set(['Input']),
check_dygraph=(self.use_mkldnn == False))
8 years ago
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
8 years ago
self.filter_size = [6, f_c, 3, 3]
def init_test_case_2(self):
pass
7 years ago
def init_dilation(self):
self.dilations = [1, 1]
8 years ago
def init_group(self):
self.groups = 1
7 years ago
def init_kernel_type(self):
pass
7 years ago
class TestWithPad(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
7 years ago
self.filter_size = [6, f_c, 3, 3]
class TestWithStride(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 6, 6] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
7 years ago
self.filter_size = [6, f_c, 3, 3]
class TestWithGroup(TestConv2dOp):
8 years ago
def init_group(self):
self.groups = 3
class TestWith1x1(TestConv2dOp):
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 1, 1]
def init_group(self):
self.groups = 3
class TestWithDepthWise3x3(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [3, 4, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [8, f_c, 3, 3]
def init_dilation(self):
self.dilations = [2, 2]
def init_group(self):
self.groups = 4
class TestWithDepthWise5x5(TestConv2dOp):
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 4, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [8, f_c, 5, 5]
def init_group(self):
self.groups = 4
class TestWithDepthWise7x7(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 8, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [16, f_c, 7, 7]
def init_group(self):
self.groups = 8
class TestWithDilation(TestConv2dOp):
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 3, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
def init_dilation(self):
self.dilations = [2, 2]
8 years ago
def init_group(self):
self.groups = 3
7 years ago
class TestWithInput1x1Filter1x1(TestConv2dOp):
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 3, 1, 1] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 1, 1]
def init_group(self):
self.groups = 3
#----------------Conv2dCUDNN----------------
create_test_cudnn_class(TestConv2dOp)
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
7 years ago
#----------------Conv2dCUDNN fp16----------------
create_test_cudnn_fp16_class(TestConv2dOp, grad_check=False)
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
#----------------TestDepthwiseConv -----
7 years ago
class TestDepthwiseConv(TestConv2dOp):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConv2(TestConv2dOp):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConv3(TestConv2dOp):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConvWithDilation(TestConv2dOp):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConvWithDilation2(TestConv2dOp):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConvandFuse(TestConv2dOp):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConv2andFuse(TestConv2dOp):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConv3andFuse(TestConv2dOp):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConvWithDilationandFuse(TestConv2dOp):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConvWithDilation2andFuse(TestConv2dOp):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestCUDNNExhaustiveSearch(TestConv2dOp):
def init_kernel_type(self):
self.use_cudnn = True
self.exhaustive_search = True
class TestConv2dOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input of conv2d must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
fluid.layers.conv2d(x1, 1, 1)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
# the input dtype of conv2d must be float16 or float32 or float64
# float16 only can be set on GPU place
x2 = fluid.layers.data(
name='x2', shape=[3, 4, 5, 6], dtype="int32")
fluid.layers.conv2d(x2, 1, 1)
self.assertRaises(TypeError, test_dtype)
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_op_type(self):
# self.op_type = "conv_cudnn"
# ---- test asymmetric padding ----
class TestConv2dOp_v2(OpTest):
def setUp(self):
self.op_type = "conv2d"
self.use_cudnn = False
self.exhaustive_search = False
self.use_cuda = False
self.use_mkldnn = False
self.fuse_relu_before_depthwise_conv = False
self.dtype = np.float32
self.init_kernel_type()
self.init_group()
self.init_dilation()
self.init_data_format()
self.init_test_case()
self.init_paddings()
self.init_test_case_2()
conv2d_param = {
'stride': self.stride,
'pad': self.pad,
'dilation': self.dilations
}
input = np.random.random(self.input_size).astype(self.dtype)
if not self.has_cuda():
self.fuse_relu_before_depthwise_conv = False
if self.fuse_relu_before_depthwise_conv:
input = input - 0.5
input -= (input < 0) * 0.1
input += (input >= 0) * 0.1
input2 = np.maximum(input, 0.0)
else:
input2 = input
filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
output, _, _, _, _ = conv2d_forward_naive(
input2, filter, self.groups, conv2d_param, self.padding_algorithm,
self.data_format)
output = output.astype(self.dtype)
self.inputs = {
'Input': OpTest.np_dtype_to_fluid_dtype(input),
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'padding_algorithm': self.padding_algorithm,
'groups': self.groups,
'dilations': self.dilations,
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn,
'data_format': self.data_format,
'fuse_relu_before_depthwise_conv':
self.fuse_relu_before_depthwise_conv,
'exhaustive_search': self.exhaustive_search
}
self.outputs = {'Output': output}
def has_cuda(self):
return core.is_compiled_with_cuda() and (self.use_cudnn or
self.use_cuda)
def test_check_output(self):
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
self.check_output_with_place(
place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
def test_check_grad(self):
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
self.check_grad_with_place(
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
place, {'Input', 'Filter'},
'Output',
max_relative_error=0.02,
check_dygraph=(self.use_mkldnn == False))
def test_check_grad_no_filter(self):
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.02,
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
no_grad_set=set(['Filter']),
check_dygraph=(self.use_mkldnn == False))
def test_check_grad_no_input(self):
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if self.dtype == np.float16:
return
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.02,
open dygraph op test, test=develop (#19787) * open dygraph op test, test=develop * modify to_variable, test=develop * modify input and output for dygraph, test=develop * modify input and output for dygraph(fix bug), test=develop * fix input processing of dygraph op test, test=develop * fix bug, test=develop * fix op test, test=develop * fix forward bug for dygraph, test=develop * fix mkldnn op test for forward, test=develop * update nn.py for dygraph, test=develop * fix crop_tensor_op, test=develop * fix elementwise_mul_op, test=develop * fix fill_op, test=develop * fix some mkldnn op, test=develop * open backward op test for dygraph, test=develop * delete log, test=develop * close backward op test for dygraph, test=develop * fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop * fix optest backward bug for dygraph, test=develop * fix optest backward bug for dygraph, test=develop * close backward op test for dygraph, test=develop * close backward op test for dygraph, test=develop * open dygraph op test, test=develop * fix op test for dygraph, fix GradOpDescMaker, test=develop * fix bug for linear_chain_crf_op.h, test=develop * remove log, test=develop * remove log, test=develop * remove log for op_test.py, test=develop * remove log for op_test.py, test=develop * fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop * fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop * fix bug for test_increment_ngraph_op.py, test=develop * fix lod for op test in dygraph, test=develop * refactor op_test.py to reduce redundant code, test=develop * fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop * remove debug log, test=develop * remove redundant code in base.py, test=develop * fix some error in optest, test=develop * fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop * refactor op_test.py, test=develop * remove redundant writing, test=develop * fix error(get tensor of the grad variable), test=develop * fix test_concat_mkldnn test_conv2d_mkldnn, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix optest.py for get tensor of LoDTensor, test=develop * fix some redundant code, test=develop * reslove conflict and rewrite paddle error message, test=develop
5 years ago
no_grad_set=set(['Input']),
check_dygraph=(self.use_mkldnn == False))
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 2]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 4, 3]
def init_dilation(self):
self.dilations = [1, 1]
def init_group(self):
self.groups = 1
def init_kernel_type(self):
pass
def init_paddings(self):
self.pad = [0, 0]
self.padding_algorithm = "EXPLICIT"
def init_data_format(self):
self.data_format = "NCHW"
def init_test_case_2(self):
pass
class TestConv2dOp_AsyPadding(TestConv2dOp_v2):
def init_paddings(self):
self.pad = [0, 0, 1, 2]
self.padding_algorithm = "EXPLICIT"
class TestWithPad_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
def init_paddings(self):
self.pad = [2, 1, 3, 2]
self.padding_algorithm = "EXPLICIT"
class TestWithStride_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [2, 2]
self.input_size = [2, 3, 6, 6] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
def init_paddings(self):
self.pad = [2, 1, 3, 2]
self.padding_algorithm = "EXPLICIT"
class TestWithGroup_AsyPadding(TestConv2dOp_v2):
def init_group(self):
self.groups = 3
class TestWith1x1_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 1, 1]
def init_group(self):
self.groups = 3
def init_paddings(self):
self.pad = [2, 2, 4, 0]
self.padding_algorithm = "EXPLICIT"
class TestWithDepthWise3x3_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [3, 4, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [8, f_c, 3, 3]
def init_dilation(self):
self.dilations = [2, 2]
def init_group(self):
self.groups = 4
def init_paddings(self):
self.pad = [1, 3, 2, 1]
self.padding_algorithm = "EXPLICIT"
class TestWithDepthWise5x5_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [2, 4, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [8, f_c, 5, 5]
def init_group(self):
self.groups = 4
def init_paddings(self):
self.pad = [0, 1, 1, 0]
self.padding_algorithm = "EXPLICIT"
class TestWithDepthWise7x7_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [2, 2]
self.input_size = [2, 8, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [16, f_c, 7, 7]
def init_group(self):
self.groups = 8
def init_paddings(self):
self.pad = [1, 3, 4, 1]
self.padding_algorithm = "EXPLICIT"
class TestWithDilation_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [2, 3, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
def init_dilation(self):
self.dilations = [2, 2]
def init_group(self):
self.groups = 3
def init_paddings(self):
self.pad = [0, 1, 3, 0]
self.padding_algorithm = "EXPLICIT"
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.stride = [1, 1]
self.input_size = [2, 3, 1, 1] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 1, 1]
def init_group(self):
self.groups = 3
def init_paddings(self):
self.pad = [0, 3, 4, 0]
self.padding_algorithm = "EXPLICIT"
create_test_cudnn_class(TestConv2dOp_AsyPadding)
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)
class TestDepthwiseConv_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.use_cuda = True
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 1, 0, 1]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConv2_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.use_cuda = True
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [0, 1, 0, 2]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConv3_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.use_cuda = True
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 1, 0, 0]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConvWithDilation_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 1, 2, 1]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConvWithDilation2_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [0, 1, 1, 0]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConvandFuse_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [2, 1, 2, 3]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConv2andFuse_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [3, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 1, 1, 2]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConv3andFuse_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 2, 0, 2]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConvWithDilationandFuse_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [2, 1, 1, 0]
self.padding_algorithm = "EXPLICIT"
class TestDepthwiseConvWithDilation2andFuse_AsyPadding(TestConv2dOp_v2):
def init_test_case(self):
self.fuse_relu_before_depthwise_conv = True
self.use_cuda = True
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
self.dilations = [2, 2]
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
def init_paddings(self):
self.pad = [1, 3, 1, 3]
self.padding_algorithm = "EXPLICIT"
#---------- test SAME VALID -----------
create_test_padding_SAME_class(TestConv2dOp_AsyPadding)
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)
create_test_padding_VALID_class(TestConv2dOp_AsyPadding)
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestConv2dOp_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestConv2dOp_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)
# depthwise conv2d
create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
# ------------ test channel last ---------
create_test_channel_last_class(TestConv2dOp_AsyPadding)
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)
create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
create_test_cudnn_channel_last_class(TestConv2dOp_AsyPadding)
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)
# --------- test python API ---------------
class TestConv2dAPI(OpTest):
def test_api(self):
input_NHWC = fluid.layers.data(
name="input_NHWC",
shape=[2, 5, 5, 3],
append_batch_size=False,
dtype="float32")
input_NCHW = fluid.layers.data(
name="input_NCHW",
shape=[2, 3, 5, 5],
append_batch_size=False,
dtype="float32")
fluid.layers.conv2d(
input=input_NHWC,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=0,
dilation=[1, 1],
groups=1,
data_format="NCHW")
fluid.layers.conv2d(
input=input_NCHW,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=[1, 2, 1, 0],
dilation=[1, 1],
groups=1,
data_format="NCHW")
fluid.layers.conv2d(
input=input_NCHW,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
dilation=[1, 1],
groups=1,
data_format="NCHW")
fluid.layers.conv2d(
input=input_NHWC,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
dilation=[1, 1],
groups=1,
data_format="NHWC")
fluid.layers.conv2d(
input=input_NCHW,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding="SAME",
dilation=[1, 1],
groups=1,
data_format="NCHW")
fluid.layers.conv2d(
input=input_NCHW,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding="VALID",
dilation=[1, 1],
groups=1,
data_format="NCHW")
class TestConv2dAPI_Error(OpTest):
def test_api(self):
input = fluid.layers.data(
name="input",
shape=[2, 5, 5, 5],
append_batch_size=False,
dtype="float32")
# ValueError: cudnn
def run_1():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=0,
dilation=[1, 1],
groups=1,
use_cudnn=[0],
data_format="NCHW")
self.assertRaises(ValueError, run_1)
# ValueError: data_format
def run_2():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=0,
dilation=[1, 1],
groups=1,
use_cudnn=False,
data_format="NCHWC")
self.assertRaises(ValueError, run_2)
# ValueError: padding
def run_3():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding="SAMEE",
dilation=[1, 1],
groups=1,
use_cudnn=False,
data_format="NCHW")
self.assertRaises(ValueError, run_3)
def run_4():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
dilation=[1, 1],
groups=1,
use_cudnn=False,
data_format="NCHW")
self.assertRaises(ValueError, run_4)
def run_5():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
dilation=[1, 1],
groups=1,
use_cudnn=False,
data_format="NHWC")
self.assertRaises(ValueError, run_5)
# ValueError: channel dimmention
x = fluid.layers.data(
name="x",
shape=[2, 5, 5, -1],
append_batch_size=False,
dtype="float32")
def run_6():
fluid.layers.conv2d(
input=x,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=0,
dilation=[1, 1],
groups=1,
use_cudnn=False,
data_format="NHWC")
self.assertRaises(ValueError, run_6)
# ValueError: groups
def run_7():
fluid.layers.conv2d(
input=input,
num_filters=3,
filter_size=[3, 3],
stride=[1, 1],
padding=0,
dilation=[1, 1],
groups=3,
use_cudnn=False,
data_format="NHWC")
self.assertRaises(ValueError, run_7)
if __name__ == '__main__':
unittest.main()