|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from op_test import OpTest
|
|
|
|
from paddle.fluid import Program, program_guard
|
|
|
|
|
|
|
|
|
|
|
|
def conv2d_forward_naive(input,
|
|
|
|
filter,
|
|
|
|
group,
|
|
|
|
conv_param,
|
|
|
|
padding_algorithm='EXPLICIT',
|
|
|
|
data_format='NCHW'):
|
|
|
|
if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
|
|
|
|
raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
|
|
|
|
"It can only be 'SAME' or 'VALID'." %
|
|
|
|
str(padding_algorithm))
|
|
|
|
|
|
|
|
if data_format not in ["NCHW", "NHWC"]:
|
|
|
|
raise ValueError("Unknown Attr(data_format): '%s' ."
|
|
|
|
"It can only be 'NCHW' or 'NHWC'." % str(data_format))
|
|
|
|
|
|
|
|
channel_last = (data_format == "NHWC")
|
|
|
|
if channel_last:
|
|
|
|
input = np.transpose(input, [0, 3, 1, 2])
|
|
|
|
|
|
|
|
in_n, in_c, in_h, in_w = input.shape
|
|
|
|
f_n, f_c, f_h, f_w = filter.shape
|
|
|
|
out_n = in_n
|
|
|
|
out_c = f_n
|
|
|
|
assert f_c * group == in_c
|
|
|
|
assert np.mod(out_c, group) == 0
|
|
|
|
sub_out_c = out_c // group
|
|
|
|
sub_f_n = f_n // group
|
|
|
|
|
|
|
|
stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
|
|
|
|
'dilation']
|
|
|
|
|
|
|
|
# update pad and dilation
|
|
|
|
def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
|
|
|
|
padding = []
|
|
|
|
for input_size, filter_size, stride_size in zip(input_shape, pool_size,
|
|
|
|
pool_stride):
|
|
|
|
out_size = int((input_size + stride_size - 1) / stride_size)
|
|
|
|
pad_sum = np.max((
|
|
|
|
(out_size - 1) * stride_size + filter_size - input_size, 0))
|
|
|
|
pad_0 = int(pad_sum / 2)
|
|
|
|
pad_1 = int(pad_sum - pad_0)
|
|
|
|
padding.append(pad_0)
|
|
|
|
padding.append(pad_1)
|
|
|
|
return padding
|
|
|
|
|
|
|
|
ksize = filter.shape[2:4]
|
|
|
|
if padding_algorithm == "VALID":
|
|
|
|
pad = [0, 0, 0, 0]
|
|
|
|
elif padding_algorithm == "SAME":
|
|
|
|
dilation = [1, 1]
|
|
|
|
input_data_shape = input.shape[2:4]
|
|
|
|
pad = _get_padding_with_SAME(input_data_shape, ksize, stride)
|
|
|
|
|
|
|
|
pad_h_0, pad_h_1 = pad[0], pad[0]
|
|
|
|
pad_w_0, pad_w_1 = pad[1], pad[1]
|
|
|
|
if len(pad) == 4:
|
|
|
|
pad_h_0, pad_h_1 = pad[0], pad[1]
|
|
|
|
pad_w_0, pad_w_1 = pad[2], pad[3]
|
|
|
|
|
|
|
|
out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
|
|
|
|
(f_h - 1) + 1)) // stride[0]
|
|
|
|
out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
|
|
|
|
(f_w - 1) + 1)) // stride[1]
|
|
|
|
out = np.zeros((out_n, out_c, out_h, out_w))
|
|
|
|
|
|
|
|
d_bolck_h = (dilation[0] * (f_h - 1) + 1)
|
|
|
|
d_bolck_w = (dilation[1] * (f_w - 1) + 1)
|
|
|
|
|
|
|
|
input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
|
|
|
|
(pad_w_0, pad_w_1)),
|
|
|
|
mode='constant',
|
|
|
|
constant_values=0)
|
|
|
|
|
|
|
|
filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
|
|
|
|
filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
|
|
|
|
1]] = filter
|
|
|
|
|
|
|
|
for i in range(out_h):
|
|
|
|
for j in range(out_w):
|
|
|
|
for g in range(group):
|
|
|
|
input_pad_masked = \
|
|
|
|
input_pad[:, g * f_c:(g + 1) * f_c,
|
|
|
|
i * stride[0]:i * stride[0] + d_bolck_h,
|
|
|
|
j * stride[1]:j * stride[1] + d_bolck_w]
|
|
|
|
|
|
|
|
f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
|
|
|
|
# sub_f_n == sub_out_c
|
|
|
|
for k in range(sub_out_c):
|
|
|
|
# Multiplication of Corresponding Elements, then sum all
|
|
|
|
out[:, g * sub_out_c + k, i, j] = \
|
|
|
|
np.sum(input_pad_masked * f_sub[k, :, :, :],
|
|
|
|
axis=(1, 2, 3))
|
|
|
|
|
|
|
|
if channel_last:
|
|
|
|
out = np.transpose(out, [0, 2, 3, 1])
|
|
|
|
|
|
|
|
return out, in_n, out_h, out_w, out_c
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_cudnn_class(parent):
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestCUDNNCase(parent):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
|
|
|
|
TestCUDNNCase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestCUDNNCase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_cudnn_fp16_class(parent, grad_check=True):
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestConv2DCUDNNFp16(parent):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
self.dtype = np.float16
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place):
|
|
|
|
self.check_output_with_place(place, atol=2e-2)
|
|
|
|
|
|
|
|
def test_check_grad_no_filter(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place) and grad_check:
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Input'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
|
|
|
no_grad_set=set(['Filter']))
|
|
|
|
|
|
|
|
def test_check_grad_no_input(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place) and grad_check:
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Filter'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
|
|
|
no_grad_set=set(['Input']))
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
|
|
|
|
TestConv2DCUDNNFp16.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestConv2DCUDNNFp16
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_channel_last_class(parent):
|
|
|
|
class TestChannelLastCase(parent):
|
|
|
|
def init_data_format(self):
|
|
|
|
self.data_format = "NHWC"
|
|
|
|
|
|
|
|
def init_test_case_2(self):
|
|
|
|
N, C, H, W = self.input_size
|
|
|
|
self.input_size = [N, H, W, C]
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
|
|
|
|
TestChannelLastCase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestChannelLastCase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_cudnn_channel_last_class(parent):
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestCudnnChannelLastCase(parent):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
|
|
|
|
def init_data_format(self):
|
|
|
|
self.data_format = "NHWC"
|
|
|
|
|
|
|
|
def init_test_case_2(self):
|
|
|
|
N, C, H, W = self.input_size
|
|
|
|
self.input_size = [N, H, W, C]
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
|
|
|
|
TestCudnnChannelLastCase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestCudnnChannelLastCase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_padding_SAME_class(parent):
|
|
|
|
class TestPaddingSMAECase(parent):
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.padding_algorithm = "SAME"
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
|
|
|
|
TestPaddingSMAECase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestPaddingSMAECase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_padding_VALID_class(parent):
|
|
|
|
class TestPaddingVALIDCase(parent):
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.padding_algorithm = "VALID"
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
|
|
|
|
TestPaddingVALIDCase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestPaddingVALIDCase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_cudnn_padding_SAME_class(parent):
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestCUDNNPaddingSMAECase(parent):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.padding_algorithm = "SAME"
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
|
|
|
|
TestCUDNNPaddingSMAECase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestCUDNNPaddingSMAECase
|
|
|
|
|
|
|
|
|
|
|
|
def create_test_cudnn_padding_VALID_class(parent):
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestCUDNNPaddingVALIDCase(parent):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.padding_algorithm = "VALID"
|
|
|
|
|
|
|
|
cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
|
|
|
|
TestCUDNNPaddingVALIDCase.__name__ = cls_name
|
|
|
|
globals()[cls_name] = TestCUDNNPaddingVALIDCase
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dOp(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "conv2d"
|
|
|
|
self.use_cudnn = False
|
|
|
|
self.exhaustive_search = False
|
|
|
|
self.use_cuda = False
|
|
|
|
self.use_mkldnn = False
|
|
|
|
self.fuse_relu_before_depthwise_conv = False
|
|
|
|
self.data_format = "AnyLayout"
|
|
|
|
self.dtype = np.float32
|
|
|
|
self.init_kernel_type()
|
|
|
|
self.init_group()
|
|
|
|
self.init_dilation()
|
|
|
|
self.init_test_case()
|
|
|
|
|
|
|
|
conv2d_param = {
|
|
|
|
'stride': self.stride,
|
|
|
|
'pad': self.pad,
|
|
|
|
'dilation': self.dilations
|
|
|
|
}
|
|
|
|
|
|
|
|
input = np.random.random(self.input_size).astype(self.dtype)
|
|
|
|
if not self.has_cuda():
|
|
|
|
self.fuse_relu_before_depthwise_conv = False
|
|
|
|
if self.fuse_relu_before_depthwise_conv:
|
|
|
|
input = input - 0.5
|
|
|
|
input -= (input < 0) * 0.1
|
|
|
|
input += (input >= 0) * 0.1
|
|
|
|
input2 = np.maximum(input, 0.0)
|
|
|
|
else:
|
|
|
|
input2 = input
|
|
|
|
filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
|
|
|
|
|
|
|
|
output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
|
|
|
|
conv2d_param)
|
|
|
|
output = output.astype(self.dtype)
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
'Input': OpTest.np_dtype_to_fluid_dtype(input),
|
|
|
|
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
|
|
|
|
}
|
|
|
|
self.attrs = {
|
|
|
|
'strides': self.stride,
|
|
|
|
'paddings': self.pad,
|
|
|
|
'groups': self.groups,
|
|
|
|
'dilations': self.dilations,
|
|
|
|
'use_cudnn': self.use_cudnn,
|
|
|
|
'use_mkldnn': self.use_mkldnn,
|
|
|
|
'data_format': self.data_format,
|
|
|
|
'fuse_relu_before_depthwise_conv':
|
|
|
|
self.fuse_relu_before_depthwise_conv,
|
|
|
|
'exhaustive_search': self.exhaustive_search
|
|
|
|
}
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
def has_cuda(self):
|
|
|
|
return core.is_compiled_with_cuda() and (self.use_cudnn or
|
|
|
|
self.use_cuda)
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
self.check_output_with_place(
|
|
|
|
place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
self.check_grad_with_place(
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
place, {'Input', 'Filter'},
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad_no_filter(self):
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Input'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
no_grad_set=set(['Filter']),
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad_no_input(self):
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Filter'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
no_grad_set=set(['Input']),
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_test_case_2(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 1
|
|
|
|
|
|
|
|
def init_kernel_type(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithPad(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithStride(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 6, 6] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithGroup(TestConv2dOp):
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
|
|
|
|
class TestWith1x1(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise3x3(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [3, 4, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [8, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 4
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise5x5(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 4, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [8, f_c, 5, 5]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 4
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise7x7(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 8, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [16, f_c, 7, 7]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 8
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDilation(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithInput1x1Filter1x1(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 1, 1] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
|
|
|
|
#----------------Conv2dCUDNN----------------
|
|
|
|
|
|
|
|
create_test_cudnn_class(TestConv2dOp)
|
|
|
|
create_test_cudnn_class(TestWithPad)
|
|
|
|
create_test_cudnn_class(TestWithStride)
|
|
|
|
create_test_cudnn_class(TestWithGroup)
|
|
|
|
create_test_cudnn_class(TestWith1x1)
|
|
|
|
create_test_cudnn_class(TestWithInput1x1Filter1x1)
|
|
|
|
|
|
|
|
#----------------Conv2dCUDNN fp16----------------
|
|
|
|
|
|
|
|
create_test_cudnn_fp16_class(TestConv2dOp, grad_check=False)
|
|
|
|
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
|
|
|
|
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
|
|
|
|
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
|
|
|
|
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
|
|
|
|
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
|
|
|
|
|
|
|
|
#----------------TestDepthwiseConv -----
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv2(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv3(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation2(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvandFuse(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv2andFuse(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv3andFuse(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilationandFuse(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation2andFuse(TestConv2dOp):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
|
|
|
|
class TestCUDNNExhaustiveSearch(TestConv2dOp):
|
|
|
|
def init_kernel_type(self):
|
|
|
|
self.use_cudnn = True
|
|
|
|
self.exhaustive_search = True
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dOpError(OpTest):
|
|
|
|
def test_errors(self):
|
|
|
|
with program_guard(Program(), Program()):
|
|
|
|
|
|
|
|
def test_Variable():
|
|
|
|
# the input of conv2d must be Variable.
|
|
|
|
x1 = fluid.create_lod_tensor(
|
|
|
|
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
|
|
|
|
fluid.layers.conv2d(x1, 1, 1)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_Variable)
|
|
|
|
|
|
|
|
def test_dtype():
|
|
|
|
# the input dtype of conv2d must be float16 or float32 or float64
|
|
|
|
# float16 only can be set on GPU place
|
|
|
|
x2 = fluid.layers.data(
|
|
|
|
name='x2', shape=[3, 4, 5, 6], dtype="int32")
|
|
|
|
fluid.layers.conv2d(x2, 1, 1)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
# Please Don't remove the following code.
|
|
|
|
# Currently, CI use cudnn V5.0 which not support dilation conv.
|
|
|
|
# class TestCUDNNWithDilation(TestWithDilation):
|
|
|
|
# def init_op_type(self):
|
|
|
|
# self.op_type = "conv_cudnn"
|
|
|
|
|
|
|
|
# ---- test asymmetric padding ----
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dOp_v2(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "conv2d"
|
|
|
|
self.use_cudnn = False
|
|
|
|
self.exhaustive_search = False
|
|
|
|
self.use_cuda = False
|
|
|
|
self.use_mkldnn = False
|
|
|
|
self.fuse_relu_before_depthwise_conv = False
|
|
|
|
self.dtype = np.float32
|
|
|
|
self.init_kernel_type()
|
|
|
|
self.init_group()
|
|
|
|
self.init_dilation()
|
|
|
|
self.init_data_format()
|
|
|
|
self.init_test_case()
|
|
|
|
|
|
|
|
self.init_paddings()
|
|
|
|
self.init_test_case_2()
|
|
|
|
|
|
|
|
conv2d_param = {
|
|
|
|
'stride': self.stride,
|
|
|
|
'pad': self.pad,
|
|
|
|
'dilation': self.dilations
|
|
|
|
}
|
|
|
|
|
|
|
|
input = np.random.random(self.input_size).astype(self.dtype)
|
|
|
|
if not self.has_cuda():
|
|
|
|
self.fuse_relu_before_depthwise_conv = False
|
|
|
|
if self.fuse_relu_before_depthwise_conv:
|
|
|
|
input = input - 0.5
|
|
|
|
input -= (input < 0) * 0.1
|
|
|
|
input += (input >= 0) * 0.1
|
|
|
|
input2 = np.maximum(input, 0.0)
|
|
|
|
else:
|
|
|
|
input2 = input
|
|
|
|
filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
|
|
|
|
output, _, _, _, _ = conv2d_forward_naive(
|
|
|
|
input2, filter, self.groups, conv2d_param, self.padding_algorithm,
|
|
|
|
self.data_format)
|
|
|
|
output = output.astype(self.dtype)
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
'Input': OpTest.np_dtype_to_fluid_dtype(input),
|
|
|
|
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
|
|
|
|
}
|
|
|
|
self.attrs = {
|
|
|
|
'strides': self.stride,
|
|
|
|
'paddings': self.pad,
|
|
|
|
'padding_algorithm': self.padding_algorithm,
|
|
|
|
'groups': self.groups,
|
|
|
|
'dilations': self.dilations,
|
|
|
|
'use_cudnn': self.use_cudnn,
|
|
|
|
'use_mkldnn': self.use_mkldnn,
|
|
|
|
'data_format': self.data_format,
|
|
|
|
'fuse_relu_before_depthwise_conv':
|
|
|
|
self.fuse_relu_before_depthwise_conv,
|
|
|
|
'exhaustive_search': self.exhaustive_search
|
|
|
|
}
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
def has_cuda(self):
|
|
|
|
return core.is_compiled_with_cuda() and (self.use_cudnn or
|
|
|
|
self.use_cuda)
|
|
|
|
|
|
|
|
def test_check_output(self):
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
self.check_output_with_place(
|
|
|
|
place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
|
|
|
self.check_grad_with_place(
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
place, {'Input', 'Filter'},
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad_no_filter(self):
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Input'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
no_grad_set=set(['Filter']),
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def test_check_grad_no_input(self):
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
if self.dtype == np.float16:
|
|
|
|
return
|
|
|
|
place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Filter'],
|
|
|
|
'Output',
|
|
|
|
max_relative_error=0.02,
|
open dygraph op test, test=develop (#19787)
* open dygraph op test, test=develop
* modify to_variable, test=develop
* modify input and output for dygraph, test=develop
* modify input and output for dygraph(fix bug), test=develop
* fix input processing of dygraph op test, test=develop
* fix bug, test=develop
* fix op test, test=develop
* fix forward bug for dygraph, test=develop
* fix mkldnn op test for forward, test=develop
* update nn.py for dygraph, test=develop
* fix crop_tensor_op, test=develop
* fix elementwise_mul_op, test=develop
* fix fill_op, test=develop
* fix some mkldnn op, test=develop
* open backward op test for dygraph, test=develop
* delete log, test=develop
* close backward op test for dygraph, test=develop
* fix bug for edit_distance_op and test_lstm_cudnn_op, test=develop
* fix optest backward bug for dygraph, test=develop
* fix optest backward bug for dygraph, test=develop
* close backward op test for dygraph, test=develop
* close backward op test for dygraph, test=develop
* open dygraph op test, test=develop
* fix op test for dygraph, fix GradOpDescMaker, test=develop
* fix bug for linear_chain_crf_op.h, test=develop
* remove log, test=develop
* remove log, test=develop
* remove log for op_test.py, test=develop
* remove log for op_test.py, test=develop
* fix bug for var_conv_2d_op, change PADDLE_ENFORCE, test=develop
* fix PADDLE_ENFORCE_EQ for hierarchical_sigmoid_op.cc, test=develop
* fix bug for test_increment_ngraph_op.py, test=develop
* fix lod for op test in dygraph, test=develop
* refactor op_test.py to reduce redundant code, test=develop
* fix lod optest, modify InputVar/OutputVar to HasInput/HasOutput, test=develop
* remove debug log, test=develop
* remove redundant code in base.py, test=develop
* fix some error in optest, test=develop
* fix ClearNoNeedBufferInputs function's bug for LoDTensor, test=develop
* refactor op_test.py, test=develop
* remove redundant writing, test=develop
* fix error(get tensor of the grad variable), test=develop
* fix test_concat_mkldnn test_conv2d_mkldnn, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix optest.py for get tensor of LoDTensor, test=develop
* fix some redundant code, test=develop
* reslove conflict and rewrite paddle error message, test=develop
5 years ago
|
|
|
no_grad_set=set(['Input']),
|
|
|
|
check_dygraph=(self.use_mkldnn == False))
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.stride = [1, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 4, 3]
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 1
|
|
|
|
|
|
|
|
def init_kernel_type(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
def init_data_format(self):
|
|
|
|
self.data_format = "NCHW"
|
|
|
|
|
|
|
|
def init_test_case_2(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dOp_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 0, 1, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithPad_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [2, 1, 3, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithStride_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 6, 6] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [2, 1, 3, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithGroup_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
|
|
|
|
class TestWith1x1_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [2, 2, 4, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise3x3_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [3, 4, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [8, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 4
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 3, 2, 1]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise5x5_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 4, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [8, f_c, 5, 5]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 4
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 1, 1, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDepthWise7x7_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 8, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [16, f_c, 7, 7]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 8
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 3, 4, 1]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithDilation_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 10, 10] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
|
|
|
|
def init_dilation(self):
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 1, 3, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 1, 1] # NCHW
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 1, 1]
|
|
|
|
|
|
|
|
def init_group(self):
|
|
|
|
self.groups = 3
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 3, 4, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
create_test_cudnn_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_cudnn_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_cudnn_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_cudnn_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_cudnn_class(TestWith1x1_AsyPadding)
|
|
|
|
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1, 0, 1]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv2_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 1, 0, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv3_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1, 0, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1, 2, 1]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation2_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [0, 1, 1, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvandFuse_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [2, 1, 2, 3]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv2andFuse_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [3, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 1, 1, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConv3andFuse_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 2, 0, 2]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilationandFuse_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [2, 2]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [2, 1, 1, 0]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
class TestDepthwiseConvWithDilation2andFuse_AsyPadding(TestConv2dOp_v2):
|
|
|
|
def init_test_case(self):
|
|
|
|
self.fuse_relu_before_depthwise_conv = True
|
|
|
|
self.use_cuda = True
|
|
|
|
self.pad = [1, 1]
|
|
|
|
self.stride = [1, 1]
|
|
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
self.groups = 3
|
|
|
|
self.dilations = [2, 2]
|
|
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
|
|
f_c = self.input_size[1] // self.groups
|
|
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
self.op_type = "depthwise_conv2d"
|
|
|
|
|
|
|
|
def init_paddings(self):
|
|
|
|
self.pad = [1, 3, 1, 3]
|
|
|
|
self.padding_algorithm = "EXPLICIT"
|
|
|
|
|
|
|
|
|
|
|
|
#---------- test SAME VALID -----------
|
|
|
|
create_test_padding_SAME_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
create_test_padding_VALID_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
create_test_cudnn_padding_SAME_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
create_test_cudnn_padding_VALID_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
# depthwise conv2d
|
|
|
|
|
|
|
|
create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
|
|
|
|
create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
|
|
|
|
|
|
|
|
create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
|
|
|
|
create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
|
|
|
|
|
|
|
|
# ------------ test channel last ---------
|
|
|
|
create_test_channel_last_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestWith1x1_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)
|
|
|
|
|
|
|
|
create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
|
|
|
|
create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
|
|
|
|
|
|
|
|
create_test_cudnn_channel_last_class(TestConv2dOp_AsyPadding)
|
|
|
|
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
|
|
|
|
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
|
|
|
|
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
|
|
|
|
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)
|
|
|
|
|
|
|
|
|
|
|
|
# --------- test python API ---------------
|
|
|
|
class TestConv2dAPI(OpTest):
|
|
|
|
def test_api(self):
|
|
|
|
|
|
|
|
input_NHWC = fluid.layers.data(
|
|
|
|
name="input_NHWC",
|
|
|
|
shape=[2, 5, 5, 3],
|
|
|
|
append_batch_size=False,
|
|
|
|
dtype="float32")
|
|
|
|
|
|
|
|
input_NCHW = fluid.layers.data(
|
|
|
|
name="input_NCHW",
|
|
|
|
shape=[2, 3, 5, 5],
|
|
|
|
append_batch_size=False,
|
|
|
|
dtype="float32")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NHWC,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=0,
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NCHW,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=[1, 2, 1, 0],
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NCHW,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NHWC,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NHWC")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NCHW,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding="SAME",
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input_NCHW,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding="VALID",
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dAPI_Error(OpTest):
|
|
|
|
def test_api(self):
|
|
|
|
input = fluid.layers.data(
|
|
|
|
name="input",
|
|
|
|
shape=[2, 5, 5, 5],
|
|
|
|
append_batch_size=False,
|
|
|
|
dtype="float32")
|
|
|
|
|
|
|
|
# ValueError: cudnn
|
|
|
|
def run_1():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=0,
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=[0],
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_1)
|
|
|
|
|
|
|
|
# ValueError: data_format
|
|
|
|
def run_2():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=0,
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NCHWC")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_2)
|
|
|
|
|
|
|
|
# ValueError: padding
|
|
|
|
def run_3():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding="SAMEE",
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_3)
|
|
|
|
|
|
|
|
def run_4():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NCHW")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_4)
|
|
|
|
|
|
|
|
def run_5():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NHWC")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_5)
|
|
|
|
|
|
|
|
# ValueError: channel dimmention
|
|
|
|
x = fluid.layers.data(
|
|
|
|
name="x",
|
|
|
|
shape=[2, 5, 5, -1],
|
|
|
|
append_batch_size=False,
|
|
|
|
dtype="float32")
|
|
|
|
|
|
|
|
def run_6():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=x,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=0,
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=1,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NHWC")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_6)
|
|
|
|
|
|
|
|
# ValueError: groups
|
|
|
|
def run_7():
|
|
|
|
fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=3,
|
|
|
|
filter_size=[3, 3],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=0,
|
|
|
|
dilation=[1, 1],
|
|
|
|
groups=3,
|
|
|
|
use_cudnn=False,
|
|
|
|
data_format="NHWC")
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, run_7)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|