You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layer_helper.py

178 lines
6.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import copy
import six
from .framework import Parameter, dtype_is_floating, in_dygraph_mode, OpProtoHolder
from . import unique_name
from paddle.fluid.initializer import Constant, Xavier
from .param_attr import ParamAttr
from . import core
from six.moves import zip
from .layer_helper_base import LayerHelperBase
class LayerHelper(LayerHelperBase):
def __init__(self, layer_type, **kwargs):
self.kwargs = kwargs
name = self.kwargs.get('name', None)
# TODO(panyx0718, minqiyang): dygraph mode
# can not use both `layer_type` and `name`. Deprecate LayerHelper
# and write a Helper for dygraph mode.
if name is None:
self.kwargs['name'] = unique_name.generate(layer_type)
super(LayerHelper, self).__init__(
self.kwargs['name'], layer_type=layer_type)
def append_op(self, *args, **kwargs):
return self.main_program.current_block().append_op(*args, **kwargs)
def multiple_input(self, input_param_name='input'):
inputs = self.kwargs.get(input_param_name, [])
ret = []
if isinstance(inputs, list) or isinstance(inputs, tuple):
for inp in inputs:
ret.append(self.to_variable(inp))
else:
ret.append(self.to_variable(inputs))
return ret
def input(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
if len(inputs) != 1:
raise "{0} layer only takes one input".format(self.layer_type)
return inputs[0]
@property
def param_attr(self):
7 years ago
return ParamAttr._to_attr(self.kwargs.get('param_attr', None))
@property
def bias_attr(self):
7 years ago
return ParamAttr._to_attr(self.kwargs.get('bias_attr', None))
#TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of param_attr
def multiple_param_attr(self, length):
param_attr = self.param_attr
if isinstance(param_attr, ParamAttr):
param_attr = [param_attr]
if len(param_attr) != 1 and len(param_attr) != length:
raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1:
tmp = [None] * length
for i in six.moves.range(length):
tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp
return param_attr
def iter_inputs_and_params(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
param_attrs = self.multiple_param_attr(len(inputs))
for ipt, param_attr in zip(inputs, param_attrs):
yield ipt, param_attr
def input_dtype(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
dtype = None
for each in inputs:
if dtype is None:
dtype = each.dtype
elif dtype != each.dtype:
raise ValueError("Data Type mismatch: %d to %d" %
(dtype, each.dtype))
return dtype
def get_parameter(self, name):
param = self.main_program.global_block().var(name)
if not isinstance(param, Parameter):
raise ValueError("no Parameter name %s found" % name)
return param
#TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of bias_attr
def append_bias_op(self, input_var, dim_start=1, dim_end=None):
"""
Append bias operator and return its output. If the user does not set
bias_attr, append_bias_op will return input_var
:param input_var: the input variable. The len(input_var.shape) is
larger or equal than 2.
:bias_initializer: an instance of a subclass of Initializer used to
initialize the bias
:param dim_start:
:param dim_end: the shape of the bias will be
input_var.shape[dim_start:dim_end]. The bias is broadcasted to other
dimensions and added to input_var to get the output
"""
size = list(input_var.shape[dim_start:dim_end])
bias_attr = self.bias_attr
if not bias_attr:
return input_var
b = self.create_parameter(
attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
self.append_op(
type='elementwise_add',
inputs={'X': [input_var],
'Y': [b]},
outputs={'Out': [tmp]},
attrs={'axis': dim_start})
return tmp
#TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of act
def append_activation(self, input_var):
act = self.kwargs.get('act', None)
if act is None:
return input_var
if isinstance(act, six.string_types):
act = {'type': act}
7 years ago
else:
raise TypeError(str(act) + " should be unicode or str")
if 'use_cudnn' in self.kwargs and self.kwargs.get('use_cudnn'):
act['use_cudnn'] = self.kwargs.get('use_cudnn')
use_mkldnn = self.kwargs.get(
'use_mkldnn', core.globals().get("FLAGS_use_mkldnn", False))
if use_mkldnn:
act['use_mkldnn'] = use_mkldnn
act_type = act.pop('type')
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
self.append_op(
type=act_type,
inputs={"X": [input_var]},
outputs={"Out": [tmp]},
attrs=act)
return tmp
#TODO (jiabin): should we remove this since it has never be used
def _get_default_initializer(self, dtype):
if dtype is None or dtype_is_floating(dtype) is True:
return Xavier()
else:
# For integer and boolean types, initialize with all zeros
return Constant()
#TODO (jiabin): reconstruct this in LayerObjHelper and avoid dependency of kwargs
def is_instance(self, param_name, cls):
param = self.kwargs.get(param_name, None)
if not isinstance(param, cls):
raise TypeError("The input {0} parameter of method {1} must be {2}",
param_name, self.layer_type, cls.__name__)