You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/math_op_patch.py

346 lines
13 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .. import core
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
from ..layers.layer_function_generator import OpProtoHolder
from ..layers import common_methods
from . import to_variable, no_grad
import paddle
import numpy as np
import six
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
_already_patch_varbase = False
def monkey_patch_math_varbase():
"""
Similar to monkey_patch_variable.
The difference is, in dygraph mode, use auto-generated op functions for better performance.
"""
@no_grad()
def create_tensor(value, dtype, shape):
out = _varbase_creator(dtype=dtype)
out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
'value', value, 'force_cpu', False)
out.stop_gradient = True
return out
def create_scalar(value, dtype):
return create_tensor(value, dtype, shape=[1])
def astype(self, dtype):
"""
**Notes**:
**The variable must be a** :ref:`api_fluid_Tensor`
Cast a variable to a specified data type.
Args:
self(Variable): The source variable
dtype: The target data type
Returns:
Variable: Variable with new dtype
Examples:
In Static Graph Mode:
.. code-block:: python
import paddle.fluid as fluid
startup_prog = fluid.Program()
main_prog = fluid.Program()
with fluid.program_guard(startup_prog, main_prog):
original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}".format(new_variable.dtype))
In Dygraph Mode:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
original_variable = fluid.dygraph.to_variable(x)
print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
def _scalar_elementwise_op_(var, scale, bias):
return core.ops.scale(var, 'scale', scale, 'bias', bias)
def _neg_(var):
return _scalar_elementwise_op_(var, -1.0, 0.0)
def _float_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to float."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
return float(var.numpy().flatten()[0])
def _long_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to long."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
if six.PY2:
return long(var.numpy().flatten()[0])
else:
return int(var.numpy().flatten()[0])
def _int_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to int."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
return int(var.numpy().flatten()[0])
def _len_(var):
return var.shape[0]
def _index_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to python index."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
if six.PY2:
return long(var.numpy().flatten()[0])
else:
return int(var.numpy().flatten()[0])
@property
def _ndim_(var):
return len(var.shape)
def _scalar_add_(var, value):
return _scalar_elementwise_op_(var, 1.0, value)
def _scalar_sub_(var, value):
return _scalar_elementwise_op_(var, 1.0, -value)
def _scalar_rsub_(var, value):
return _scalar_elementwise_op_(var, -1.0, value)
def _scalar_mul_(var, value):
return _scalar_elementwise_op_(var, value, 0.0)
def _scalar_div_(var, value):
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
# TODO(shenliang03): currently, it supports divide, floor_divide, remainder
# for binary operator by using the api to achieve the type promotion
def _binary_method_creator_(op_type, reverse=False):
import paddle
def __impl__(self, other_var):
import paddle
op = getattr(paddle, op_type)
if reverse:
return op(other_var, self)
else:
return op(self, other_var)
__impl__.__doc__ = """
See paddle.{}""".format(op_type)
__impl__.__name__ = op_type
return __impl__
# for binary operator such as elementwise, compare
def _binary_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
# which may lose accuracy. This is a hot fix for release 1.6.
if scalar_method is not None and not (
op_type == 'elementwise_div' and
self.dtype in _supported_int_dtype_):
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = self.dtype
if not isinstance(other_var, core.VarBase):
if reverse:
other_var = create_tensor(
other_var, dtype=lhs_dtype, shape=self.shape)
else:
# add fill_op
other_var = create_scalar(value=other_var, dtype=lhs_dtype)
rhs_dtype = other_var.dtype
if lhs_dtype != rhs_dtype:
other_var = astype(other_var, lhs_dtype)
if reverse:
tmp = self
self = other_var
other_var = tmp
axis = -1
math_op = getattr(core.ops, op_type)
return math_op(self, other_var, 'axis', axis)
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
__impl__.__doc__ = """
{0}
Args:
self(Tensor): left hand Tensor
other_var(Tensor|float|int): right hand Tensor
Returns:
Tensor
""".format(comment)
__impl__.__name__ = method_name
return __impl__
# Todo(zhouwei): implement dygraph template to adapt to any function, receive('op_type', 'arg_template')
# Such as _method_creator_('addmm', 'x, y, alpha=1.0, beta=1.0, name=None'). It can reduce call time.
def _method_creator_(op_type, arg_template=None):
def __impl__(self):
op = getattr(core.ops, op_type)
return op(self)
__impl__.__doc__ = """
See paddle.{}""".format(op_type)
__impl__.__name__ = op_type
return __impl__
varbase_methods = [
# Type1: From custom fun or lambda
## b=-a
('__neg__', _neg_),
('__float__', _float_),
('__long__', _long_),
('__int__', _int_),
('__len__', _len_),
('__index__', _index_),
('astype', astype),
('dim', lambda x: len(x.shape)),
('ndimension', lambda x: len(x.shape)),
('ndim', _ndim_),
('size', lambda x: x.shape),
# Type2: From Template that create core.ops automatically. It's recommended.
('__add__',
_binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
## a+b == b+a. Do not need to reverse explicitly
('__radd__',
_binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
_scalar_sub_)),
('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
_scalar_rsub_)),
('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
_scalar_mul_)),
## a*b == b*a. Do not need to reverse explicitly
('__rmul__',
_binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
None)),
('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
None)),
('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
None)),
# These binary use paddle.optype
('__div__', _binary_method_creator_('divide', False)),
('__truediv__', _binary_method_creator_('divide', False)),
('__rtruediv__', _binary_method_creator_('divide', True)),
('__rdiv__', _binary_method_creator_('divide', True)),
('__floordiv__', _binary_method_creator_('floor_divide', False)),
('__rfloordiv__', _binary_method_creator_('floor_divide', True)),
('__mod__', _binary_method_creator_('remainder', False)),
## for logical compare
('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
('__array_ufunc__', None),
('sigmoid', _method_creator_('sigmoid', 'name=None')),
('logsigmoid', _method_creator_('logsigmoid', 'name=None')),
('exp', _method_creator_('exp', 'name=None')),
('tanh', _method_creator_('tanh', 'name=None')),
('atan', _method_creator_('atan', 'name=None')),
('tanh_shrink', _method_creator_('tanh_shrink', 'name=None')),
('sqrt', _method_creator_('sqrt', 'name=None')),
('rsqrt', _method_creator_('rsqrt', 'name=None')),
('abs', _method_creator_('abs', 'name=None')),
('ceil', _method_creator_('ceil', 'name=None')),
('floor', _method_creator_('floor', 'name=None')),
('cos', _method_creator_('cos', 'name=None')),
('acos', _method_creator_('acos', 'name=None')),
('asin', _method_creator_('asin', 'name=None')),
('sin', _method_creator_('sin', 'name=None')),
('sinh', _method_creator_('sinh', 'name=None')),
('cosh', _method_creator_('cosh', 'name=None')),
('round', _method_creator_('round', 'name=None')),
('reciprocal', _method_creator_('reciprocal', 'name=None')),
('square', _method_creator_('square', 'name=None')),
('softplus', _method_creator_('softplus', 'name=None')),
('softsign', _method_creator_('softsign', 'name=None')),
# Type3: Form module 'paddle.tensor' defaultly.
# It's not a goodway, because it will increase call time.
]
global _already_patch_varbase
if not _already_patch_varbase:
for method in varbase_methods:
method_name = method[0]
method_impl = method[1]
setattr(core.VarBase, method_name, method_impl)
else:
import paddle.tensor
for method_name in common_methods:
if hasattr(core.VarBase, method_name): continue
method_impl = getattr(paddle.tensor, method_name, None)
if method_impl: setattr(core.VarBase, method_name, method_impl)
_already_patch_varbase = True