|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/pool_op.h"
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
|
|
#endif
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
|
|
|
|
bool ceil_mode) {
|
|
|
|
int output_size;
|
|
|
|
if (!ceil_mode) {
|
|
|
|
output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
|
|
|
} else {
|
|
|
|
output_size =
|
|
|
|
(input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
|
|
|
|
}
|
|
|
|
PADDLE_ENFORCE(output_size > 0,
|
|
|
|
"Due to the settings of padding(%d), filter_size(%d) and "
|
|
|
|
"stride(%d), the output size is less than 0, please check "
|
|
|
|
"again. Input_size:%d",
|
|
|
|
padding, filter_size, stride, input_size);
|
|
|
|
return output_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
|
"Out(Output) of Pooling should not be null.");
|
|
|
|
|
|
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
|
|
|
|
|
|
std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
|
|
|
|
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
|
|
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
|
|
bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
|
|
|
|
bool adaptive = ctx->Attrs().Get<bool>("adaptive");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
|
|
|
|
"Pooling intput should be 4-D or 5-D tensor.");
|
|
|
|
|
|
|
|
if (ctx->Attrs().Get<bool>("global_pooling")) {
|
|
|
|
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
|
|
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
|
|
paddings[i] = 0;
|
|
|
|
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
|
|
|
|
"Input size and pooling size should be consistent.");
|
|
|
|
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
|
|
|
|
"Strides size and pooling size should be the same.");
|
|
|
|
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
|
|
|
|
"Paddings size and pooling size should be the same.");
|
|
|
|
|
|
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
|
|
|
if (adaptive) {
|
|
|
|
output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
|
|
|
|
} else {
|
|
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
|
|
output_shape.push_back(PoolOutputSize(
|
|
|
|
in_x_dims[i + 2], ksize[i], paddings[i], strides[i], ceil_mode));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
|
|
ctx->ShareLoD("X", "Out");
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::OpKernelType PoolOp::GetExpectedKernelType(
|
|
|
|
const framework::ExecutionContext& ctx) const {
|
|
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
|
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
|
|
|
|
layout_, library_);
|
|
|
|
}
|
|
|
|
|
|
|
|
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
|
|
"Input(X@GRAD) should not be null.");
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
|
|
|
|
const framework::ExecutionContext& ctx) const {
|
|
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
|
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
auto input_data_type = ctx.Input<Tensor>("X")->type();
|
|
|
|
if (input_data_type == framework::proto::VarType::FP16) {
|
|
|
|
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
|
|
|
|
"float16 can only be used when CUDNN is used");
|
|
|
|
}
|
|
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
|
|
|
|
library_);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Pool2dOpMaker::Make() {
|
|
|
|
AddInput(
|
|
|
|
"X",
|
|
|
|
"(Tensor) The input tensor of pooling operator. "
|
|
|
|
"The format of input tensor is NCHW, where N is batch size, C is the "
|
|
|
|
"number of channels, H is the height of the feature, "
|
|
|
|
"and W is the width of the feature.");
|
|
|
|
AddOutput("Out",
|
|
|
|
"(Tensor) The output tensor of pooling operator. "
|
|
|
|
"The format of output tensor is also NCHW, "
|
|
|
|
"where N is batch size, C is the number of channels, "
|
|
|
|
"H is the height of the feature, "
|
|
|
|
"and W is the width of the feature.");
|
|
|
|
|
|
|
|
AddAttr<std::string>("pooling_type",
|
|
|
|
"(string), pooling type, can be \"max\" for max-pooling "
|
|
|
|
"and \"avg\" for average-pooling.")
|
|
|
|
.InEnum({"max", "avg"});
|
|
|
|
AddAttr<std::vector<int>>("ksize",
|
|
|
|
"(vector<int>) The pooling window "
|
|
|
|
"size(height, width) of the pooling operator. "
|
|
|
|
"If global_pooling = true, ksize and paddings will "
|
|
|
|
"be ignored."); // TODO(Chengduo): Add checker.
|
|
|
|
// (Currently,
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddAttr<bool>("global_pooling",
|
|
|
|
"(bool, default false) Whether to use the global pooling. "
|
|
|
|
"If global_pooling = true, ksize and paddings will be ignored.")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<std::vector<int>>("strides",
|
|
|
|
"(vector<int>, default {1, 1}), strides(height, "
|
|
|
|
"width) of pooling operator.")
|
|
|
|
.SetDefault({1, 1});
|
|
|
|
// TODO(Chengduo): Add checker. (Currently,
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
"paddings",
|
|
|
|
"(vector<int>, default {0,0}), paddings(height, width) of pooling "
|
|
|
|
"operator."
|
|
|
|
"If global_pooling = true, paddings and ksize will be ignored.")
|
|
|
|
.SetDefault({0, 0});
|
|
|
|
AddAttr<bool>(
|
|
|
|
"exclusive",
|
|
|
|
"(bool, default True) When true, will exclude the zero-padding in the "
|
|
|
|
"averaging calculating, otherwise, include the zero-padding. Note, it "
|
|
|
|
"is only used when pooling_type is avg. The defalut is True.")
|
|
|
|
.SetDefault(true);
|
|
|
|
AddAttr<bool>(
|
|
|
|
"adaptive",
|
|
|
|
"(bool, default False) When true, will perform adaptive pooling instead, "
|
|
|
|
"output shape in H and W dimensions will be same as ksize, input data "
|
|
|
|
"will be divided into grids specify by ksize averagely and perform "
|
|
|
|
"pooling in each grid area to get output pooling value.")
|
|
|
|
.SetDefault(false);
|
|
|
|
|
|
|
|
AddAttr<bool>(
|
|
|
|
"use_cudnn",
|
|
|
|
"(bool, default false) Only used in cudnn kernel, need install cudnn")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<bool>(
|
|
|
|
"ceil_mode",
|
|
|
|
"(bool, default false) Wether to use the ceil function to calculate "
|
|
|
|
"output height and width. False is the default. If it is set to False, "
|
|
|
|
"the floor function will be used.")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<bool>("use_mkldnn",
|
|
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<std::string>(
|
|
|
|
"data_format",
|
|
|
|
"(string, default NCHW) Only used in "
|
|
|
|
"An optional string from: \"NHWC\", \"NCHW\". "
|
|
|
|
"Defaults to \"NHWC\". Specify the data format of the output data, "
|
|
|
|
"the input will be transformed automatically. ")
|
|
|
|
.SetDefault("AnyLayout");
|
|
|
|
AddAttr<bool>("is_test",
|
|
|
|
"(bool, default false) Set to true for inference only, false "
|
|
|
|
"for training. Some layers may run faster when this is true.")
|
|
|
|
.SetDefault(false);
|
|
|
|
|
|
|
|
// TODO(dzhwinter): need to registered layout transform function
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
The pooling2d operation calculates the output based on
|
|
|
|
the input, pooling_type and ksize, strides, paddings parameters.
|
|
|
|
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
|
|
|
|
number of channels, H is the height of the feature, and W is the width of the feature.
|
|
|
|
Parameters(ksize, strides, paddings) are two elements.
|
|
|
|
These two elements represent height and width, respectively.
|
|
|
|
The input(X) size and output(Out) size may be different.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
Input:
|
|
|
|
|
|
|
|
X shape: $(N, C, H_{in}, W_{in})$
|
|
|
|
|
|
|
|
Output:
|
|
|
|
|
|
|
|
Out shape: $(N, C, H_{out}, W_{out})$
|
|
|
|
|
|
|
|
For ceil_mode = false:
|
|
|
|
$$
|
|
|
|
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
|
|
|
|
$$
|
|
|
|
For ceil_mode = true:
|
|
|
|
$$
|
|
|
|
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
|
|
|
|
$$
|
|
|
|
|
|
|
|
For exclusive = false:
|
|
|
|
.. math::
|
|
|
|
hstart &= i * strides[0] - paddings[0] \\
|
|
|
|
hend &= hstart + ksize[0] \\
|
|
|
|
wstart &= j * strides[1] - paddings[1] \\
|
|
|
|
wend &= wstart + ksize[1] \\
|
|
|
|
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
|
|
|
|
For exclusive = true:
|
|
|
|
.. math::
|
|
|
|
hstart &= max(0, i * strides[0] - paddings[0]) \\
|
|
|
|
hend &= min(H, hstart + ksize[0]) \\
|
|
|
|
wstart &= max(0, j * strides[1] - paddings[1]) \\
|
|
|
|
wend &= min(W, wstart + ksize[1]) \\
|
|
|
|
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
|
|
|
|
|
|
|
|
For adaptive = true:
|
|
|
|
.. math::
|
|
|
|
hstart &= floor(i * H_{in} / H_{out}) \\
|
|
|
|
hend &= ceil((i + 1) * H_{in} / H_{out}) \\
|
|
|
|
wstart &= floor(j * W_{in} / W_{out}) \\
|
|
|
|
wend &= ceil((j + 1) * W_{in} / W_{out}) \\
|
|
|
|
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
|
|
|
|
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
|
|
|
|
protected:
|
|
|
|
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
|
|
|
|
const override {
|
|
|
|
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
void Pool3dOpMaker::Make() {
|
|
|
|
AddInput("X",
|
|
|
|
"(Tensor) The input tensor of pooling operator. "
|
|
|
|
"The format of input tensor is NCDHW, where N is batch size, C is "
|
|
|
|
"the number of channels, and D, H and W is the depth, height and "
|
|
|
|
"width of "
|
|
|
|
"the feature, respectively.");
|
|
|
|
AddOutput("Out",
|
|
|
|
"(Tensor) The output tensor of pooling operator."
|
|
|
|
"The format of output tensor is also NCDHW, "
|
|
|
|
"where N is batch size, C is "
|
|
|
|
"the number of channels, and D, H and W is the depth, height and "
|
|
|
|
"width of the feature, respectively.");
|
|
|
|
|
|
|
|
AddAttr<std::string>("pooling_type",
|
|
|
|
"(string) Pooling type, can be \"max\" for max-pooling "
|
|
|
|
"and \"avg\" for average-pooling.")
|
|
|
|
.InEnum({"max", "avg"});
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
"ksize",
|
|
|
|
"(vector<int>) The pooling window size(depth, height, "
|
|
|
|
"width) of pooling operator. "
|
|
|
|
"If global_pooling = true, ksize and paddings will "
|
|
|
|
"be ignored."); // TODO(Chengduo): Add checker.
|
|
|
|
// (Currently,
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddAttr<bool>(
|
|
|
|
"global_pooling",
|
|
|
|
"(bool, default false) Whether to use the global pooling. "
|
|
|
|
"If global_pooling = true, ksize and paddings wille be ignored.")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
"strides",
|
|
|
|
"(vector<int>, default {1,1,1}) Strides(depth, height, "
|
|
|
|
"width) of the pooling operator.")
|
|
|
|
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
"paddings",
|
|
|
|
"(vector<int>, default {0,0,0}), paddings(depth, height, "
|
|
|
|
"width) of pooling operator. "
|
|
|
|
"If global_pooling = true, ksize and paddings will be ignored.")
|
|
|
|
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddAttr<bool>(
|
|
|
|
"exclusive",
|
|
|
|
"(bool, default True) When true, will exclude the zero-padding in the "
|
|
|
|
"averaging calculating, otherwise, include the zero-padding. Note, it "
|
|
|
|
"is only used when pooling_type is avg. The defalut is True.")
|
|
|
|
.SetDefault(true);
|
|
|
|
AddAttr<bool>(
|
|
|
|
"adaptive",
|
|
|
|
"(bool, default False) When true, will perform adaptive pooling instead, "
|
|
|
|
"output shape in H and W dimensions will be same as ksize, input data "
|
|
|
|
"will be divided into grids specify by ksize averagely and perform "
|
|
|
|
"pooling in each grid area to get output pooling value.")
|
|
|
|
.SetDefault(false);
|
|
|
|
|
|
|
|
AddAttr<bool>(
|
|
|
|
"use_cudnn",
|
|
|
|
"(bool, default false) Only used in cudnn kernel, need install cudnn")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<bool>(
|
|
|
|
"ceil_mode",
|
|
|
|
"(bool, default false) Wether to use the ceil function to calculate "
|
|
|
|
"output height and width. False is the default. If it is set to False, "
|
|
|
|
"the floor function will be used.")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<bool>("use_mkldnn",
|
|
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
|
|
.SetDefault(false);
|
|
|
|
AddAttr<std::string>(
|
|
|
|
"data_format",
|
|
|
|
"(string, default NCHW) Only used in "
|
|
|
|
"An optional string from: \"NHWC\", \"NCHW\". "
|
|
|
|
"Defaults to \"NHWC\". Specify the data format of the output data, "
|
|
|
|
"the input will be transformed automatically. ")
|
|
|
|
.SetDefault("AnyLayout");
|
|
|
|
// TODO(dzhwinter): need to registered layout transform function
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
Pool3d Operator.
|
|
|
|
|
|
|
|
The pooling3d operation calculates the output based on
|
|
|
|
the input, pooling_type, ksize, strides, and paddings parameters.
|
|
|
|
Input(X) and output(Out) are in NCDHW format, where N is batch
|
|
|
|
size, C is the number of channels, and D, H and W are the depth, height and
|
|
|
|
width of the feature, respectively. Parameters(ksize, strides, paddings)
|
|
|
|
are three elements. These three elements represent depth, height and
|
|
|
|
width, respectively. The input(X) size and output(Out) size may be different.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
Input:
|
|
|
|
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
|
|
|
|
Output:
|
|
|
|
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
|
|
|
|
For ceil_mode = false:
|
|
|
|
$$
|
|
|
|
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[2]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
|
|
|
|
$$
|
|
|
|
For ceil_mode = true:
|
|
|
|
$$
|
|
|
|
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
|
|
|
|
$$
|
|
|
|
|
|
|
|
For exclusive = false:
|
|
|
|
.. math::
|
|
|
|
dstart &= i * strides[0] - paddings[0] \\
|
|
|
|
dend &= dstart + ksize[0] \\
|
|
|
|
hstart &= j * strides[1] - paddings[1] \\
|
|
|
|
hend &= hstart + ksize[1] \\
|
|
|
|
wstart &= k * strides[2] - paddings[2] \\
|
|
|
|
wend &= wstart + ksize[2] \\
|
|
|
|
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
|
|
|
|
For exclusive = true:
|
|
|
|
.. math::
|
|
|
|
dstart &= max(0, i * strides[0] - paddings[0]) \\
|
|
|
|
dend &= min(D, dstart + ksize[0]) \\
|
|
|
|
hend &= min(H, hstart + ksize[1]) \\
|
|
|
|
wstart &= max(0, k * strides[2] - paddings[2]) \\
|
|
|
|
wend &= min(W, wstart + ksize[2]) \\
|
|
|
|
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
|
|
|
|
|
|
|
|
For adaptive = true:
|
|
|
|
.. math::
|
|
|
|
dstart &= floor(i * D_{in} / D_{out}) \\
|
|
|
|
dend &= ceil((i + 1) * D_{in} / D_{out}) \\
|
|
|
|
hstart &= floor(j * H_{in} / H_{out}) \\
|
|
|
|
hend &= ceil((j + 1) * H_{in} / H_{out}) \\
|
|
|
|
wstart &= floor(k * W_{in} / W_{out}) \\
|
|
|
|
wend &= ceil((k + 1) * W_{in} / W_{out}) \\
|
|
|
|
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
|
|
|
|
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
|
|
|
|
ops::PoolOpInferVarType,
|
|
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
|
|
|
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
|
|
|
|
ops::PoolOpInferVarType,
|
|
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
|
|
|
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
|