You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/pool_op.cc

470 lines
19 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
bool ceil_mode) {
int output_size;
if (!ceil_mode) {
output_size = (input_size - filter_size + 2 * padding) / stride + 1;
} else {
output_size =
(input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
}
7 years ago
PADDLE_ENFORCE(output_size > 0,
"Due to the settings of padding(%d), filter_size(%d) and "
"stride(%d), the output size is less than 0, please check "
"again. Input_size:%d",
padding, filter_size, stride, input_size);
return output_size;
}
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Out(Output) of Pooling should not be null.");
auto in_x_dims = ctx->GetInputDim("X");
7 years ago
std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
bool adaptive = ctx->Attrs().Get<bool>("adaptive");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
7 years ago
"Pooling intput should be 4-D or 5-D tensor.");
7 years ago
if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
7 years ago
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
7 years ago
}
}
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
"Input size and pooling size should be consistent.");
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
"Strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
"Paddings size and pooling size should be the same.");
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
if (adaptive) {
output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
} else {
for (size_t i = 0; i < ksize.size(); ++i) {
output_shape.push_back(PoolOutputSize(
in_x_dims[i + 2], ksize[i], paddings[i], strides[i], ceil_mode));
}
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->ShareLoD("X", "Out");
}
framework::OpKernelType PoolOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
7 years ago
#ifdef PADDLE_WITH_CUDA
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
7 years ago
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
layout_, library_);
}
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
7 years ago
#ifdef PADDLE_WITH_CUDA
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
7 years ago
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
auto input_data_type = ctx.Input<Tensor>("X")->type();
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
"float16 can only be used when CUDNN is used");
}
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
library_);
}
void Pool2dOpMaker::Make() {
AddInput(
"X",
7 years ago
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature.");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the feature, "
"and W is the width of the feature.");
7 years ago
AddAttr<std::string>("pooling_type",
7 years ago
"(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.")
.InEnum({"max", "avg"});
7 years ago
AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window "
"size(height, width) of the pooling operator. "
7 years ago
"If global_pooling = true, ksize and paddings will "
7 years ago
"be ignored."); // TODO(Chengduo): Add checker.
// (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<bool>("global_pooling",
"(bool, default false) Whether to use the global pooling. "
7 years ago
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, "
"width) of pooling operator.")
.SetDefault({1, 1});
// TODO(Chengduo): Add checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>(
"paddings",
"(vector<int>, default {0,0}), paddings(height, width) of pooling "
"operator."
7 years ago
"If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0});
AddAttr<bool>(
"exclusive",
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.")
.SetDefault(true);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
AddAttr<bool>(
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>(
"ceil_mode",
"(bool, default false) Wether to use the ceil function to calculate "
7 years ago
"output height and width. False is the default. If it is set to False, "
"the floor function will be used.")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
// TODO(dzhwinter): need to registered layout transform function
AddComment(R"DOC(
The pooling2d operation calculates the output based on
7 years ago
the input, pooling_type and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
7 years ago
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
7 years ago
The input(X) size and output(Out) size may be different.
Example:
7 years ago
7 years ago
Input:
7 years ago
X shape: $(N, C, H_{in}, W_{in})$
7 years ago
7 years ago
Output:
7 years ago
Out shape: $(N, C, H_{out}, W_{out})$
7 years ago
For ceil_mode = false:
$$
7 years ago
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
7 years ago
$$
$$
7 years ago
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For ceil_mode = true:
$$
7 years ago
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
7 years ago
$$
$$
7 years ago
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
$$
For exclusive = false:
.. math::
hstart &= i * strides[0] - paddings[0] \\
hend &= hstart + ksize[0] \\
wstart &= j * strides[1] - paddings[1] \\
wend &= wstart + ksize[1] \\
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
For exclusive = true:
.. math::
hstart &= max(0, i * strides[0] - paddings[0]) \\
hend &= min(H, hstart + ksize[0]) \\
wstart &= max(0, j * strides[1] - paddings[1]) \\
wend &= min(W, wstart + ksize[1]) \\
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
For adaptive = true:
.. math::
hstart &= floor(i * H_{in} / H_{out}) \\
hend &= ceil((i + 1) * H_{in} / H_{out}) \\
wstart &= floor(j * W_{in} / W_{out}) \\
wend &= ceil((j + 1) * W_{in} / W_{out}) \\
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
)DOC");
}
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
const override {
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
}
};
void Pool3dOpMaker::Make() {
AddInput("X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, and D, H and W is the depth, height and "
"width of "
"the feature, respectively.");
AddOutput("Out",
7 years ago
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW, "
"where N is batch size, C is "
"the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively.");
7 years ago
AddAttr<std::string>("pooling_type",
"(string) Pooling type, can be \"max\" for max-pooling "
7 years ago
"and \"avg\" for average-pooling.")
.InEnum({"max", "avg"});
AddAttr<std::vector<int>>(
"ksize",
"(vector<int>) The pooling window size(depth, height, "
"width) of pooling operator. "
7 years ago
"If global_pooling = true, ksize and paddings will "
"be ignored."); // TODO(Chengduo): Add checker.
// (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<bool>(
"global_pooling",
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings wille be ignored.")
.SetDefault(false);
AddAttr<std::vector<int>>(
"strides",
"(vector<int>, default {1,1,1}) Strides(depth, height, "
"width) of the pooling operator.")
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<std::vector<int>>(
"paddings",
"(vector<int>, default {0,0,0}), paddings(depth, height, "
"width) of pooling operator. "
7 years ago
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<bool>(
"exclusive",
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.")
.SetDefault(true);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
AddAttr<bool>(
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>(
"ceil_mode",
"(bool, default false) Wether to use the ceil function to calculate "
7 years ago
"output height and width. False is the default. If it is set to False, "
"the floor function will be used.")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
// TODO(dzhwinter): need to registered layout transform function
AddComment(R"DOC(
Pool3d Operator.
The pooling3d operation calculates the output based on
7 years ago
the input, pooling_type, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
width, respectively. The input(X) size and output(Out) size may be different.
7 years ago
Example:
Input:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
7 years ago
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
For ceil_mode = false:
$$
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
$$
$$
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[2]} + 1
$$
$$
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For ceil_mode = true:
$$
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1
$$
$$
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1
$$
$$
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
For exclusive = false:
.. math::
dstart &= i * strides[0] - paddings[0] \\
dend &= dstart + ksize[0] \\
hstart &= j * strides[1] - paddings[1] \\
hend &= hstart + ksize[1] \\
wstart &= k * strides[2] - paddings[2] \\
wend &= wstart + ksize[2] \\
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
For exclusive = true:
.. math::
dstart &= max(0, i * strides[0] - paddings[0]) \\
dend &= min(D, dstart + ksize[0]) \\
hend &= min(H, hstart + ksize[1]) \\
wstart &= max(0, k * strides[2] - paddings[2]) \\
wend &= min(W, wstart + ksize[2]) \\
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
For adaptive = true:
.. math::
dstart &= floor(i * D_{in} / D_{out}) \\
dend &= ceil((i + 1) * D_{in} / D_{out}) \\
hstart &= floor(j * H_{in} / H_{out}) \\
hend &= ceil((j + 1) * H_{in} / H_{out}) \\
wstart &= floor(k * W_{in} / W_{out}) \\
wend &= ceil((k + 1) * W_{in} / W_{out}) \\
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
ops::PoolOpInferVarType,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(
pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
ops::PoolOpInferVarType,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(
pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);