【NPU】Support npu kernel for matmul op (#31544)
* add matmulv2_npu * add matmul * add matmulrevert-31562-mean
parent
f400ce9f51
commit
29d50d2049
@ -0,0 +1,160 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/operators/matmul_v2_op.h"
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MatMulV2NPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::Tensor>("X");
|
||||
auto* y = ctx.Input<framework::Tensor>("Y");
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
bool transpose_x = ctx.Attr<bool>("trans_x");
|
||||
bool transpose_y = ctx.Attr<bool>("trans_y");
|
||||
|
||||
if (x->dims().size() == 2) {
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner = NpuOpRunner(
|
||||
"MatMul", {*x, *y}, {*out},
|
||||
{{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
runner.Run(stream);
|
||||
|
||||
} else if (x->dims().size() > 2) {
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner =
|
||||
NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
|
||||
{{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
runner.Run(stream);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::Tensor>("X");
|
||||
auto* y = ctx.Input<framework::Tensor>("Y");
|
||||
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
|
||||
bool transpose_y = ctx.Attr<bool>("trans_y");
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
|
||||
if (x->dims().size() == 2) {
|
||||
if (transpose_y) {
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dx =
|
||||
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
|
||||
{{"transpose_x1", false}, {"transpose_x2", false}});
|
||||
|
||||
runner_dx.Run(stream);
|
||||
}
|
||||
if (dy) {
|
||||
dy->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dy =
|
||||
NpuOpRunner("MatMul", {*dout, *x}, {*dy},
|
||||
{{"transpose_x1", true}, {"transpose_x2", false}});
|
||||
|
||||
runner_dy.Run(stream);
|
||||
}
|
||||
|
||||
} else {
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dx =
|
||||
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
|
||||
{{"transpose_x1", false}, {"transpose_x2", true}});
|
||||
|
||||
runner_dx.Run(stream);
|
||||
}
|
||||
if (dy) {
|
||||
dy->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dy =
|
||||
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
|
||||
{{"transpose_x1", true}, {"transpose_x2", false}});
|
||||
|
||||
runner_dy.Run(stream);
|
||||
}
|
||||
}
|
||||
} else if (x->dims().size() > 2) {
|
||||
if (transpose_y) {
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
|
||||
{{"adj_x1", false}, {"adj_x2", false}});
|
||||
|
||||
runner_dx.Run(stream);
|
||||
}
|
||||
if (dy) {
|
||||
dy->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dy = NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
|
||||
{{"adj_x1", true}, {"adj_x2", false}});
|
||||
|
||||
runner_dy.Run(stream);
|
||||
}
|
||||
} else {
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
|
||||
{{"adj_x1", false}, {"adj_x2", true}});
|
||||
|
||||
runner_dx.Run(stream);
|
||||
}
|
||||
if (dy) {
|
||||
dy->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_dy = NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
|
||||
{{"adj_x1", true}, {"adj_x2", false}});
|
||||
runner_dy.Run(stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
matmul_v2,
|
||||
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
matmul_v2_grad,
|
||||
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
@ -0,0 +1,210 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
|
||||
"""Reference forward implementation using np.matmul."""
|
||||
# np.matmul does not support the transpose flags, so we manually
|
||||
# transpose X and Y appropriately.
|
||||
if transpose_X:
|
||||
if X.ndim == 1:
|
||||
X = X.reshape((X.size, ))
|
||||
elif X.ndim == 2:
|
||||
X = X.T
|
||||
else:
|
||||
dim = [i for i in range(len(X.shape))]
|
||||
dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
|
||||
X = np.transpose(X, tuple(dim))
|
||||
if transpose_Y:
|
||||
if Y.ndim == 1:
|
||||
Y = Y.reshape((Y.size, ))
|
||||
else:
|
||||
dim = [i for i in range(len(Y.shape))]
|
||||
dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
|
||||
Y = np.transpose(Y, tuple(dim))
|
||||
|
||||
Out = np.matmul(X, Y)
|
||||
if not Out.shape:
|
||||
# We do not support 0-dimensional Tensors (scalars). So where
|
||||
# np.matmul outputs a scalar, we must convert to a Tensor of
|
||||
# shape (1, ) instead.
|
||||
# Everywhere else, we are compatible with np.matmul.
|
||||
Out = np.array([Out], dtype="float64")
|
||||
return Out
|
||||
|
||||
|
||||
class TestMatMul(OpTest):
|
||||
def config(self):
|
||||
self.x_shape = (100, 24)
|
||||
self.y_shape = (24, 100)
|
||||
self.trans_x = False
|
||||
self.trans_y = False
|
||||
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "matmul_v2"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.init_dtype()
|
||||
self.config()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.random(self.x_shape).astype(self.dtype)
|
||||
y = np.random.random(self.y_shape).astype(self.dtype)
|
||||
# -0.1 ~ 0.1
|
||||
x = -0.1 + 0.2 * x
|
||||
y = -0.1 + 0.2 * y
|
||||
result = reference_matmul(x, y, self.trans_x, self.trans_y)
|
||||
result = result.astype(self.dtype)
|
||||
self.inputs = {
|
||||
'X': x,
|
||||
'Y': y,
|
||||
}
|
||||
self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
|
||||
self.outputs = {'Out': result}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)
|
||||
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
class TestMatMul2(TestMatMul):
|
||||
"""
|
||||
case 2
|
||||
"""
|
||||
|
||||
def config(self):
|
||||
self.x_shape = (32, 24)
|
||||
self.y_shape = (32, 24)
|
||||
self.trans_x = False
|
||||
self.trans_y = True
|
||||
|
||||
|
||||
class TestMatMul3(TestMatMul):
|
||||
"""
|
||||
case 3
|
||||
"""
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
|
||||
class TestMatMul4(TestMatMul):
|
||||
"""
|
||||
case 4 dim=3
|
||||
"""
|
||||
|
||||
def config(self):
|
||||
self.x_shape = (2, 3, 4)
|
||||
self.y_shape = (2, 4, 3)
|
||||
self.trans_x = False
|
||||
self.trans_y = False
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestMatMulNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(2, 3)).astype('float32')
|
||||
b_np = np.random.random(size=(2, 3)).astype('float32')
|
||||
c_np = np.random.random(size=(3, 2)).astype('float32')
|
||||
d_np = np.random.random(size=(3, 2)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(2, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[2, 3], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[2, 3], dtype='float32')
|
||||
c = paddle.static.data(name="c", shape=[3, 2], dtype='float32')
|
||||
d = paddle.static.data(name="d", shape=[3, 2], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[2, 1], dtype='int64')
|
||||
|
||||
sum_1 = paddle.add(a, b)
|
||||
sum_2 = paddle.add(c, d)
|
||||
result = paddle.matmul(sum_1, sum_2)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=result, size=8)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(main_prog,
|
||||
feed={
|
||||
"a": a_np,
|
||||
"b": b_np,
|
||||
"c": c_np,
|
||||
"d": d_np,
|
||||
"label": label_np
|
||||
},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue