Add reduce sum and reduce mean xpu op (#27939)
* add reduce xpu op test=develop;test=kunlun * add reduce xpu op test=develop;test=kunlun * add reduce xpu op test=develop;test=kunlun * add reduce xpu op test=develop;test=kunlun * add reduce xpu op test=develop;test=kunlunswt-req
parent
bf412f4665
commit
4a4f773658
@ -0,0 +1,57 @@
|
||||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename DeviceContext, typename T>
|
||||
class ReduceMeanXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
platform::is_xpu_place(context.GetPlace()), true,
|
||||
platform::errors::Unavailable("This kernel only runs on XPU."));
|
||||
// bool reduce_all = context.Attr<bool>("reduce_all");
|
||||
auto* input = context.Input<Tensor>("X");
|
||||
auto* output = context.Output<Tensor>("Out");
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
int ndim = input->dims().size();
|
||||
std::vector<int> idims;
|
||||
for (int i = 0; i < input->dims().size(); i++) {
|
||||
idims.push_back(input->dims()[i]);
|
||||
}
|
||||
auto dims = context.Attr<std::vector<int>>("dim");
|
||||
int rdim = dims.size();
|
||||
int r =
|
||||
xpu::reduce(dev_ctx.x_context(), input->data<T>(), output->data<T>(),
|
||||
idims.data(), ndim, dims.data(), rdim, xpu::REDUCE_MEAN);
|
||||
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
||||
platform::errors::External("XPU kernel error!"));
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
reduce_mean,
|
||||
ops::ReduceMeanXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,123 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
|
||||
#include <memory>
|
||||
#include <string>
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ReduceSumXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
platform::is_xpu_place(context.GetPlace()), true,
|
||||
platform::errors::Unavailable("This kernel only runs on XPU."));
|
||||
bool reduce_all = context.Attr<bool>("reduce_all");
|
||||
auto* input = context.Input<Tensor>("X");
|
||||
auto* output = context.Output<Tensor>("Out");
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
if (reduce_all) {
|
||||
int input_len = input->numel();
|
||||
int r = xpu::sum(dev_ctx.x_context(), input->data<T>(), output->data<T>(),
|
||||
input_len);
|
||||
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
||||
platform::errors::External("XPU kernel error!"));
|
||||
} else {
|
||||
int ndim = input->dims().size();
|
||||
std::vector<int> idims;
|
||||
for (int i = 0; i < input->dims().size(); i++) {
|
||||
idims.push_back(input->dims()[i]);
|
||||
}
|
||||
auto dims = context.Attr<std::vector<int>>("dim");
|
||||
int rdim = dims.size();
|
||||
int r =
|
||||
xpu::reduce(dev_ctx.x_context(), input->data<T>(), output->data<T>(),
|
||||
idims.data(), ndim, dims.data(), rdim, xpu::REDUCE_SUM);
|
||||
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
||||
platform::errors::External("XPU kernel error!"));
|
||||
}
|
||||
}
|
||||
};
|
||||
template <typename DeviceContext, typename T>
|
||||
class ReduceSumGradXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto dims = context.Attr<std::vector<int>>("dim");
|
||||
bool reduce_all = context.Attr<bool>("reduce_all");
|
||||
auto* input0 = context.Input<Tensor>("X");
|
||||
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
const auto* input2_d = input2->data<T>();
|
||||
auto* output_d = output->data<T>();
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
int r = 0;
|
||||
std::vector<int> idims;
|
||||
int reduce_dim = 0;
|
||||
if (reduce_all) {
|
||||
idims.push_back(input0->numel());
|
||||
idims.push_back(1);
|
||||
idims.push_back(1);
|
||||
r = xpu::reduce_grad(dev_ctx.x_context(), input2_d, output_d,
|
||||
idims.data(), idims.size(), &reduce_dim, 1,
|
||||
xpu::REDUCE_SUM);
|
||||
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
||||
platform::errors::External("XPU kernel error!"));
|
||||
} else if (dims.size() == 1) {
|
||||
// handle reduce by one dimension
|
||||
int reduce_dim_index = dims[0];
|
||||
if (reduce_dim_index < 0) {
|
||||
reduce_dim_index += input0->dims().size();
|
||||
}
|
||||
auto& input_dim = input0->dims();
|
||||
int before_dim = 1;
|
||||
for (int i = 0; i < reduce_dim_index; ++i) {
|
||||
before_dim *= input_dim[i];
|
||||
}
|
||||
int reduce_dim = input_dim[reduce_dim_index];
|
||||
int after_dim = 1;
|
||||
for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
|
||||
after_dim *= input_dim[i];
|
||||
}
|
||||
idims.push_back(before_dim);
|
||||
idims.push_back(input_dim[reduce_dim_index]);
|
||||
idims.push_back(after_dim);
|
||||
reduce_dim = 1;
|
||||
r = xpu::reduce_grad(dev_ctx.x_context(), input2_d, output_d,
|
||||
idims.data(), idims.size(), &reduce_dim, 1,
|
||||
xpu::REDUCE_SUM);
|
||||
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
|
||||
platform::errors::External("XPU kernel error!"));
|
||||
} else {
|
||||
PADDLE_THROW(
|
||||
platform::errors::Unimplemented("unsupport reduce sum grad"));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
reduce_sum,
|
||||
ops::ReduceSumXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
reduce_sum_grad,
|
||||
ops::ReduceSumGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,206 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest, skip_check_grad_ci
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
from paddle.fluid.framework import convert_np_dtype_to_dtype_
|
||||
|
||||
|
||||
class TestMeanOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def check_grad_(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestMeanOp5D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestMeanOp6D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestMeanOp8D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'dim': (0, 3), 'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=(0, 3))}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class Test1DReduce(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {'X': np.random.random(120).astype("float64")}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class Test2DReduce0(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [0], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
|
||||
self.outputs = {'Out': self.inputs['X'].mean(axis=0)}
|
||||
|
||||
|
||||
class Test2DReduce1(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [1], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce0(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [1], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce1(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce2(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [-2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce3(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.attrs = {'dim': [1, 2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class TestKeepDimReduce(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
||||
self.attrs = {'dim': [1], 'keep_dim': True, 'use_xpu': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(
|
||||
axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim'])
|
||||
}
|
||||
|
||||
|
||||
class TestKeepDim8DReduce(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {
|
||||
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
|
||||
}
|
||||
self.attrs = {'dim': (3, 4, 5), 'keep_dim': True, 'use_xpu': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].mean(
|
||||
axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim'])
|
||||
}
|
||||
|
||||
|
||||
class TestReduceAll(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_mean"
|
||||
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
|
||||
self.attrs = {'reduce_all': True, 'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].mean()}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,206 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest, skip_check_grad_ci
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
from paddle.fluid.framework import convert_np_dtype_to_dtype_
|
||||
|
||||
|
||||
class TestSumOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def check_grad_(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestSumOp5D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestSumOp6D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestSumOp8D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {
|
||||
'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float64")
|
||||
}
|
||||
self.attrs = {'dim': (0, 3), 'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=(0, 3))}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class Test1DReduce(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random(120).astype("float64")}
|
||||
self.attrs = {'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class Test2DReduce0(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [0], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
|
||||
self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
|
||||
|
||||
|
||||
class Test2DReduce1(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [1], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce0(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [1], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce1(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce2(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [-2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class Test3DReduce3(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.attrs = {'dim': [1, 2], 'use_xpu': True}
|
||||
self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
|
||||
}
|
||||
|
||||
|
||||
class TestKeepDimReduce(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
|
||||
self.attrs = {'dim': [1], 'keep_dim': True, 'use_xpu': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
|
||||
keepdims=self.attrs['keep_dim'])
|
||||
}
|
||||
|
||||
|
||||
class TestKeepDim8DReduce(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {
|
||||
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
|
||||
}
|
||||
self.attrs = {'dim': (3, 4, 5), 'keep_dim': True, 'use_xpu': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
|
||||
keepdims=self.attrs['keep_dim'])
|
||||
}
|
||||
|
||||
|
||||
class TestReduceAll(Test1DReduce):
|
||||
def setUp(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
|
||||
self.attrs = {'reduce_all': True, 'use_xpu': True}
|
||||
self.outputs = {'Out': self.inputs['X'].sum()}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue