Add truncated_gaussian_random XPU kernel (#27861)
* Add truncated_gaussian_random_op XPU kernel * Add truncated_gaussian_random_op XPU kernel, test=kunlun * little change, test=kunlun * change boost_get to BOOST_GET_CONST * change boost_get to BOOST_GET_CONST, test=kunlun * little change, test=kunlun * use Generator to generate random number and optimize format, test=kunlun * little change, test=kunlun * add TODO, test=kunlunswt-req
parent
5b8e500135
commit
4c5b779a99
@ -0,0 +1,160 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
#include "paddle/fluid/framework/generator.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
|
||||
template <typename T>
|
||||
T Erfinv(T x) {
|
||||
if (x < -1 || x > 1) {
|
||||
return std::numeric_limits<T>::quiet_NaN();
|
||||
} else if (x == 1.0) {
|
||||
return std::numeric_limits<T>::infinity();
|
||||
} else if (x == -1.0) {
|
||||
return -std::numeric_limits<T>::infinity();
|
||||
}
|
||||
|
||||
const T LN2 = 6.931471805599453094172321214581e-1;
|
||||
|
||||
const T A0 = 1.1975323115670912564578e0;
|
||||
const T A1 = 4.7072688112383978012285e1;
|
||||
const T A2 = 6.9706266534389598238465e2;
|
||||
const T A3 = 4.8548868893843886794648e3;
|
||||
const T A4 = 1.6235862515167575384252e4;
|
||||
const T A5 = 2.3782041382114385731252e4;
|
||||
const T A6 = 1.1819493347062294404278e4;
|
||||
const T A7 = 8.8709406962545514830200e2;
|
||||
|
||||
const T B0 = 1.0000000000000000000e0;
|
||||
const T B1 = 4.2313330701600911252e1;
|
||||
const T B2 = 6.8718700749205790830e2;
|
||||
const T B3 = 5.3941960214247511077e3;
|
||||
const T B4 = 2.1213794301586595867e4;
|
||||
const T B5 = 3.9307895800092710610e4;
|
||||
const T B6 = 2.8729085735721942674e4;
|
||||
const T B7 = 5.2264952788528545610e3;
|
||||
|
||||
const T C0 = 1.42343711074968357734e0;
|
||||
const T C1 = 4.63033784615654529590e0;
|
||||
const T C2 = 5.76949722146069140550e0;
|
||||
const T C3 = 3.64784832476320460504e0;
|
||||
const T C4 = 1.27045825245236838258e0;
|
||||
const T C5 = 2.41780725177450611770e-1;
|
||||
const T C6 = 2.27238449892691845833e-2;
|
||||
const T C7 = 7.74545014278341407640e-4;
|
||||
|
||||
const T D0 = 1.4142135623730950488016887e0;
|
||||
const T D1 = 2.9036514445419946173133295e0;
|
||||
const T D2 = 2.3707661626024532365971225e0;
|
||||
const T D3 = 9.7547832001787427186894837e-1;
|
||||
const T D4 = 2.0945065210512749128288442e-1;
|
||||
const T D5 = 2.1494160384252876777097297e-2;
|
||||
const T D6 = 7.7441459065157709165577218e-4;
|
||||
const T D7 = 1.4859850019840355905497876e-9;
|
||||
|
||||
const T E0 = 6.65790464350110377720e0;
|
||||
const T E1 = 5.46378491116411436990e0;
|
||||
const T E2 = 1.78482653991729133580e0;
|
||||
const T E3 = 2.96560571828504891230e-1;
|
||||
const T E4 = 2.65321895265761230930e-2;
|
||||
const T E5 = 1.24266094738807843860e-3;
|
||||
const T E6 = 2.71155556874348757815e-5;
|
||||
const T E7 = 2.01033439929228813265e-7;
|
||||
|
||||
const T F0 = 1.414213562373095048801689e0;
|
||||
const T F1 = 8.482908416595164588112026e-1;
|
||||
const T F2 = 1.936480946950659106176712e-1;
|
||||
const T F3 = 2.103693768272068968719679e-2;
|
||||
const T F4 = 1.112800997078859844711555e-3;
|
||||
const T F5 = 2.611088405080593625138020e-5;
|
||||
const T F6 = 2.010321207683943062279931e-7;
|
||||
const T F7 = 2.891024605872965461538222e-15;
|
||||
|
||||
T abs_x = abs(x);
|
||||
|
||||
if (abs_x <= 0.85) {
|
||||
T r = 0.180625 - 0.25 * x * x;
|
||||
T num =
|
||||
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
|
||||
r +
|
||||
A0);
|
||||
T den =
|
||||
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
|
||||
r +
|
||||
B0);
|
||||
return x * num / den;
|
||||
}
|
||||
|
||||
T r = sqrt(LN2 - log(1.0 - abs_x));
|
||||
|
||||
T num, den;
|
||||
if (r <= 5.0) {
|
||||
r = r - 1.6;
|
||||
num =
|
||||
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
|
||||
r +
|
||||
C0);
|
||||
den =
|
||||
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
|
||||
r +
|
||||
D0);
|
||||
} else {
|
||||
r = r - 5.0;
|
||||
num =
|
||||
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
|
||||
r +
|
||||
E0);
|
||||
den =
|
||||
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
|
||||
r +
|
||||
F0);
|
||||
}
|
||||
|
||||
if (x < 0) {
|
||||
return -num / den;
|
||||
} else {
|
||||
return num / den;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct TruncatedNormal {
|
||||
T mean, std;
|
||||
T a_normal_cdf;
|
||||
T b_normal_cdf;
|
||||
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
|
||||
auto normal_cdf = [](T x) {
|
||||
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
|
||||
};
|
||||
a_normal_cdf = normal_cdf(-2.0);
|
||||
b_normal_cdf = normal_cdf(2.0);
|
||||
}
|
||||
|
||||
T operator()(T value) const {
|
||||
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
|
||||
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,65 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
|
||||
#include <limits>
|
||||
#include <random>
|
||||
#include "paddle/fluid/framework/generator.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class XPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
float mean = context.Attr<float>("mean");
|
||||
float std = context.Attr<float>("std");
|
||||
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||
T* data = tensor->mutable_data<T>(context.GetPlace());
|
||||
|
||||
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
|
||||
1.0);
|
||||
TruncatedNormal<T> truncated_normal(mean, std);
|
||||
int64_t size = tensor->numel();
|
||||
|
||||
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
||||
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
|
||||
// corresponding XPU device.
|
||||
auto engine = framework::GetCPURandomEngine(seed);
|
||||
|
||||
std::unique_ptr<T[]> data_cpu(new T[size]);
|
||||
|
||||
for (int64_t i = 0; i < size; ++i) {
|
||||
data_cpu[i] = truncated_normal(dist(*engine));
|
||||
}
|
||||
|
||||
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), data,
|
||||
platform::CPUPlace(), reinterpret_cast<void*>(data_cpu.get()),
|
||||
size * sizeof(T));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(truncated_gaussian_random,
|
||||
ops::XPUTruncatedGaussianRandomKernel<
|
||||
paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif // PADDLE_WITH_XPU
|
@ -0,0 +1,39 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
import unittest
|
||||
import numpy
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
from paddle.fluid.executor import Executor
|
||||
from test_truncated_gaussian_random_op import TestTrunctedGaussianRandomOp
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
class TestXPUTrunctedGaussianRandomOp(TestTrunctedGaussianRandomOp):
|
||||
def test_xpu(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
self.gaussian_random_test(place=fluid.XPUPlace(0))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue