Add gaussian_random XPU kernels (#27853)

* Add gaussian_random XPU kernels

* commit kunlun, test=kunlun

* new version, test=kunlun

* change boost_get to BOOST_GET_CONST, test=kunlun

* use Generator to generate random number and optimize format, test=kunlun

* add TODO, test=kunlun
swt-req
pangyoki 4 years ago committed by GitHub
parent 74ce039743
commit 5b8e500135
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,55 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <random>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class XPUGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
std::normal_distribution<T> dist(mean, std);
int64_t size = tensor->numel();
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
// corresponding XPU device.
auto engine = framework::GetCPURandomEngine(seed);
std::unique_ptr<T[]> data_cpu(new T[size]);
for (int64_t i = 0; i < size; ++i) {
data_cpu[i] = dist(*engine);
}
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), data,
platform::CPUPlace(), reinterpret_cast<void*>(data_cpu.get()),
size * sizeof(T));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(gaussian_random, ops::XPUGaussianRandomKernel<float>);
#endif

@ -0,0 +1,43 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from op_test import OpTest
from test_gaussian_random_op import TestGaussianRandomOp
paddle.enable_static()
class TestXPUGaussianRandomOp(TestGaussianRandomOp):
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
outs = self.calc_output(place)
outs = [np.array(out) for out in outs]
outs.sort(key=len)
self.verify_output(outs)
if __name__ == "__main__":
unittest.main()
Loading…
Cancel
Save