|
|
|
@ -15,6 +15,7 @@ limitations under the License. */
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
|
|
|
|
|
@ -109,5 +110,95 @@ class MulGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class MulDoubleGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
|
|
|
|
|
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
|
|
|
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
|
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
|
|
|
auto x_mat = x->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*x, x_num_col_dims)
|
|
|
|
|
: static_cast<const Tensor&>(*x);
|
|
|
|
|
auto y_mat = y->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*y, y_num_col_dims)
|
|
|
|
|
: static_cast<const Tensor&>(*y);
|
|
|
|
|
|
|
|
|
|
const int m = framework::flatten_to_2d(x->dims(), x_num_col_dims)[0];
|
|
|
|
|
const int n = framework::flatten_to_2d(y->dims(), y_num_col_dims)[1];
|
|
|
|
|
|
|
|
|
|
auto* dout = ctx.Input<framework::LoDTensor>("DOut");
|
|
|
|
|
Tensor dout_mat;
|
|
|
|
|
dout_mat.ShareDataWith(*dout);
|
|
|
|
|
dout_mat.Resize({m, n});
|
|
|
|
|
|
|
|
|
|
auto* ddx = ctx.Input<framework::LoDTensor>("DDX");
|
|
|
|
|
auto* ddy = ctx.Input<framework::LoDTensor>("DDY");
|
|
|
|
|
|
|
|
|
|
auto* dx = ctx.Output<framework::LoDTensor>("DX");
|
|
|
|
|
auto* dy = ctx.Output<framework::LoDTensor>("DY");
|
|
|
|
|
auto* ddout = ctx.Output<framework::LoDTensor>("DDOut");
|
|
|
|
|
|
|
|
|
|
Tensor ddout_mat;
|
|
|
|
|
if (ddout) {
|
|
|
|
|
ddout->set_lod(dout->lod());
|
|
|
|
|
// allocate and reshape ddout
|
|
|
|
|
ddout->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
ddout_mat.ShareDataWith(*ddout);
|
|
|
|
|
ddout_mat.Resize({m, n});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
|
|
|
// a flag to specify whether ddout value has been set, if flag
|
|
|
|
|
// is false, MatMul beta should be 0 to set ddout, if flag is
|
|
|
|
|
// true, MatMul beta should be 1 to add result to ddout.
|
|
|
|
|
bool ddout_flag = false;
|
|
|
|
|
if (ddx) {
|
|
|
|
|
auto ddx_mat = ddx->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*ddx, x_num_col_dims)
|
|
|
|
|
: static_cast<const Tensor&>(*ddx);
|
|
|
|
|
|
|
|
|
|
// dy = ddx' * dout. dy : K x M, ddx' : K x M, dout : M x N
|
|
|
|
|
if (dy) {
|
|
|
|
|
dy->set_lod(y->lod());
|
|
|
|
|
// allocate and reshape dy
|
|
|
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
Tensor dy_mat = dy->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*dy, y_num_col_dims)
|
|
|
|
|
: *dy;
|
|
|
|
|
blas.MatMul(ddx_mat, true, dout_mat, false, &dy_mat);
|
|
|
|
|
}
|
|
|
|
|
// ddout1 = ddx * y. ddx : M x K, y : K x N, ddout1 : M x N
|
|
|
|
|
if (ddout) {
|
|
|
|
|
blas.MatMul(ddx_mat, false, y_mat, false, static_cast<T>(1.0),
|
|
|
|
|
&ddout_mat, static_cast<T>(ddout_flag));
|
|
|
|
|
ddout_flag = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (ddy) {
|
|
|
|
|
auto ddy_mat = ddy->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*ddy, y_num_col_dims)
|
|
|
|
|
: static_cast<const Tensor&>(*ddy);
|
|
|
|
|
// dx = dout * ddy'. dout : M x N, ddy' : N x K, dx : M x K
|
|
|
|
|
if (dx) {
|
|
|
|
|
dx->set_lod(x->lod());
|
|
|
|
|
// allocate and reshape dx
|
|
|
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
Tensor dx_mat = dx->dims().size() > 2
|
|
|
|
|
? framework::ReshapeToMatrix(*dx, x_num_col_dims)
|
|
|
|
|
: *dx;
|
|
|
|
|
blas.MatMul(dout_mat, false, ddy_mat, true, &dx_mat);
|
|
|
|
|
}
|
|
|
|
|
// ddout2 = x * ddy. x : M x K, ddy : K x N, ddout2 : M x N
|
|
|
|
|
if (ddout) {
|
|
|
|
|
blas.MatMul(x_mat, false, ddy_mat, false, static_cast<T>(1.0),
|
|
|
|
|
&ddout_mat, static_cast<T>(ddout_flag));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|