|
|
|
@ -27,18 +27,8 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
|
|
|
|
|
"Input(X) of Yolov3LossOp should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("GTBox"),
|
|
|
|
|
"Input(GTBox) of Yolov3LossOp should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
|
|
"Output(Out) of Yolov3LossOp should not be null.");
|
|
|
|
|
|
|
|
|
|
// PADDLE_ENFORCE(ctx->HasAttr("img_height"),
|
|
|
|
|
// "Attr(img_height) of Yolov3LossOp should not be null. ");
|
|
|
|
|
// PADDLE_ENFORCE(ctx->HasAttr("anchors"),
|
|
|
|
|
// "Attr(anchor) of Yolov3LossOp should not be null.")
|
|
|
|
|
// PADDLE_ENFORCE(ctx->HasAttr("class_num"),
|
|
|
|
|
// "Attr(class_num) of Yolov3LossOp should not be null.");
|
|
|
|
|
// PADDLE_ENFORCE(ctx->HasAttr(
|
|
|
|
|
// "ignore_thresh",
|
|
|
|
|
// "Attr(ignore_thresh) of Yolov3LossOp should not be null."));
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
|
|
|
|
|
"Output(Loss) of Yolov3LossOp should not be null.");
|
|
|
|
|
|
|
|
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
|
|
|
auto dim_gt = ctx->GetInputDim("GTBox");
|
|
|
|
@ -46,6 +36,14 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
|
|
|
|
|
auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
|
|
|
|
|
auto box_num = ctx->Attrs().Get<int>("box_num");
|
|
|
|
|
auto class_num = ctx->Attrs().Get<int>("class_num");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
|
|
|
|
|
"Input(X) dim[3] and dim[4] should be euqal.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
|
|
|
|
|
"Input(X) dim[1] should be equal to (anchor_number * (5 "
|
|
|
|
|
"+ class_num)).");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
|
|
|
|
|
PADDLE_ENFORCE_GT(img_height, 0,
|
|
|
|
|
"Attr(img_height) value should be greater then 0");
|
|
|
|
|
PADDLE_ENFORCE_GT(anchors.size(), 0,
|
|
|
|
@ -56,14 +54,9 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
|
|
|
|
|
"Attr(box_num) should be an integer greater then 0.");
|
|
|
|
|
PADDLE_ENFORCE_GT(class_num, 0,
|
|
|
|
|
"Attr(class_num) should be an integer greater then 0.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
|
|
|
|
|
"Input(X) dim[1] should be equal to (anchor_number * (5 "
|
|
|
|
|
"+ class_num)).");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
|
|
|
|
|
|
|
|
|
|
std::vector<int64_t> dim_out({dim_x[0], 1});
|
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
|
|
|
|
|
std::vector<int64_t> dim_out({1});
|
|
|
|
|
ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
@ -80,12 +73,31 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
AddInput("X",
|
|
|
|
|
"The input tensor of bilinear interpolation, "
|
|
|
|
|
"This is a 4-D tensor with shape of [N, C, H, W]");
|
|
|
|
|
AddOutput("Out",
|
|
|
|
|
"The output yolo loss tensor, "
|
|
|
|
|
"This is a 2-D tensor with shape of [N, 1]");
|
|
|
|
|
AddInput(
|
|
|
|
|
"GTBox",
|
|
|
|
|
"The input tensor of ground truth boxes, "
|
|
|
|
|
"This is a 3-D tensor with shape of [N, max_box_num, 5 + class_num], "
|
|
|
|
|
"max_box_num is the max number of boxes in each image, "
|
|
|
|
|
"class_num is the number of classes in data set. "
|
|
|
|
|
"In the third dimention, stores x, y, w, h, confidence, classes "
|
|
|
|
|
"one-hot key. "
|
|
|
|
|
"x, y is the center cordinate of boxes and w, h is the width and "
|
|
|
|
|
"height, "
|
|
|
|
|
"and all of them should be divided by input image height to scale to "
|
|
|
|
|
"[0, 1].");
|
|
|
|
|
AddOutput("Loss",
|
|
|
|
|
"The output yolov3 loss tensor, "
|
|
|
|
|
"This is a 1-D tensor with shape of [1]");
|
|
|
|
|
|
|
|
|
|
AddAttr<int>("box_num", "The number of boxes generated in each grid.");
|
|
|
|
|
AddAttr<int>("class_num", "The number of classes to predict.");
|
|
|
|
|
AddAttr<std::vector<int>>("anchors",
|
|
|
|
|
"The anchor width and height, "
|
|
|
|
|
"it will be parsed pair by pair.");
|
|
|
|
|
AddAttr<int>("img_height",
|
|
|
|
|
"The input image height after crop of yolov3 network.");
|
|
|
|
|
AddAttr<float>("ignore_thresh",
|
|
|
|
|
"The ignore threshold to ignore confidence loss.");
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
This operator generate yolov3 loss by given predict result and ground
|
|
|
|
|
truth boxes.
|
|
|
|
@ -100,8 +112,8 @@ class Yolov3LossOpGrad : public framework::OperatorWithKernel {
|
|
|
|
|
protected:
|
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
|
|
|
"Input(Out@GRAD) should not be null");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
|
|
|
|
"Input(Loss@GRAD) should not be null");
|
|
|
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
|
|
|
|