Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into hsigmoid_op

guochaorong-patch-1
weixing02 7 years ago
commit 8bd148dc00

@ -4,6 +4,7 @@
| backyes | Yan-Fei Wang |
| baiyfbupt | Yi-Fan Bai |
| beckett1124 | Bin Qi |
| ChengduoZH | Cheng-Duo Zhao|
| chengxiaohua1105 | Xiao-Hua Cheng |
| cxwangyi, yiwangbaidu, wangkuiyi | Yi Wang |
| cxysteven | Xing-Yi Cheng |
@ -21,6 +22,7 @@
| jczaja | Jacek Czaja |
| JiayiFeng | Jia-Yi Feng |
| kbinias | Krzysztof Binias |
| kexinzhao | Ke-Xin Zhao |
| kuke | Yi-Bing Liu |
| lcy-seso | Ying Cao |
| lipeng-unisound | Peng Li |

@ -55,12 +55,14 @@ option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF)
option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(GLIDE_INSTALL "Download and install go dependencies " ON)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)
option(WITH_DISTRIBUTE "Compile with grpc distributed support" OFF)
option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF)
option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF)
option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF)
option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
# CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE)
@ -147,7 +149,16 @@ include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
if(WITH_DISTRIBUTE)
if(WITH_GRPC)
include(external/grpc)
else()
include(external/leveldb)
include(external/brpc)
endif()
endif()
include(external/snappy) # download snappy
include(external/snappystream)
include(external/threadpool)
@ -183,7 +194,10 @@ set(EXTERNAL_LIBS
if(WITH_GPU)
include(cuda)
include(tensorrt)
endif(WITH_GPU)
include(external/anakin)
else()
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when GPU is set." FORCE)
endif()
if(WITH_AMD_GPU)
find_package(HIP)

@ -24,12 +24,12 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y --allow-downgrades \
git python-pip python-dev openssh-server bison \
git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format swig doxygen cmake \
automake locales clang-format swig cmake \
liblapack-dev liblapacke-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools libtool ccache && \
@ -76,8 +76,7 @@ RUN easy_install -U pip && \
pip install sphinx-rtd-theme==0.1.9 recommonmark
RUN pip install pre-commit 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install opencv-python
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0'
#For docstring checker
RUN pip install pylint pytest astroid isort

@ -7,3 +7,6 @@ paddle/rnn/imdb.pkl
caffe/image/logs
tensorflow/image/logs
tensorflow/rnn/logs
fluid/models/*.pyc
fluid/logs
fluid/nohup.out

@ -0,0 +1,22 @@
FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
RUN apt-get update && apt-get install -y python python-pip iputils-ping libgtk2.0-dev wget vim net-tools iftop python-opencv
RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/libnccl.so
RUN pip install -U pip
RUN pip install -U kubernetes paddlepaddle
# IMPORTANT:
# Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime.
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()\npaddle.dataset.flowers.fetch()" | python'
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.mnist.train()\npaddle.dataset.mnist.test()\npaddle.dataset.imdb.fetch()" | python'
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.imikolov.fetch()" | python'
RUN pip uninstall -y paddlepaddle && mkdir /workspace
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py recordio_converter.py models/ /workspace/

@ -28,10 +28,14 @@ Currently supported `--model` argument include:
```
You can choose to use GPU/CPU training. With GPU training, you can specify
`--gpus <gpu_num>` to run multi GPU training.
You can set async mode parameter server. With async mode, you can specify
`--async_mode` to train model asynchronous.
* Run distributed training with parameter servers:
* see [run_fluid_benchmark.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh) as an example.
* start parameter servers:
```bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver
sleep 15
```
* start trainers:
```bash
@ -42,13 +46,37 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2
```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size
at any time using `fluid.batch`.
```bash
python -c 'from recordio_converter import *; prepare_mnist("data", 1)'
```
## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
have to start all those processes mannually on each node, which is not recommended.
To build the Docker image, you need to choose a paddle "whl" package to run with, you may either
download it from
http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_en.html or
build it by your own. Once you've got the "whl" package, put it under the current directory and run:
```bash
docker build -t [your docker image name]:[your docker image tag] .
```
Then push the image to a Docker registry that your Kubernetes cluster can reach.
We provide a script `kube_gen_job.py` to generate Kubernetes yaml files to submit
distributed benchmark jobs to your cluster. To generate a job yaml, just run:
```bash
python kube_gen_job.py --jobname myjob --pscpu 4 --cpu 8 --gpu 8 --psmemory 20 --memory 40 --pservers 4 --trainers 4 --entry "python fluid_benchmark.py --model mnist --parallel 1 --device GPU --update_method pserver " --disttype pserver
python kube_gen_job.py --jobname myjob --pscpu 4 --cpu 8 --gpu 8 --psmemory 20 --memory 40 --pservers 4 --trainers 4 --entry "python fluid_benchmark.py --model mnist --gpus 8 --device GPU --update_method pserver " --disttype pserver
```
Then the yaml files are generated under directory `myjob`, you can run:

@ -0,0 +1,126 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
__all__ = ['parse_args', ]
BENCHMARK_MODELS = [
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]
def parse_args():
parser = argparse.ArgumentParser('Fluid model benchmarks.')
parser.add_argument(
'--model',
type=str,
choices=BENCHMARK_MODELS,
default='resnet',
help='The model to run benchmark with.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
# args related to learning rate
parser.add_argument(
'--learning_rate', type=float, default=0.001, help='The learning rate.')
# TODO(wuyi): add "--use_fake_data" option back.
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data data_format, now only support NCHW.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
# this option is available only for vgg and resnet.
parser.add_argument(
'--cpus',
type=int,
default=1,
help='If cpus > 1, will use ParallelDo to run, else use Executor.')
parser.add_argument(
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
parser.add_argument(
'--no_test',
action='store_true',
help='If set, do not test the testset during training.')
parser.add_argument(
'--memory_optimize',
action='store_true',
help='If set, optimize runtime memory before start.')
parser.add_argument(
'--use_fake_data',
action='store_true',
help='If set ommit the actual read data operators.')
parser.add_argument(
'--profile', action='store_true', help='If set, profile a few steps.')
parser.add_argument(
'--update_method',
type=str,
default='local',
choices=['local', 'pserver', 'nccl2'],
help='Choose parameter update method, can be local, pserver, nccl2.')
parser.add_argument(
'--no_split_var',
action='store_true',
default=False,
help='Whether split variables into blocks when update_method is pserver')
parser.add_argument(
'--async_mode',
action='store_true',
default=False,
help='Whether start pserver in async mode to support ASGD')
parser.add_argument(
'--use_reader_op',
action='store_true',
help='Whether to use reader op, and must specify the data path if set this to true.'
)
parser.add_argument(
'--data_path',
type=str,
default="",
help='Directory that contains all the training recordio files.')
args = parser.parse_args()
return args

File diff suppressed because it is too large Load Diff

@ -49,7 +49,7 @@ def parse_args():
parser.add_argument(
'--fluid', default=1, type=int, help='whether is fluid job')
parser.add_argument(
'--rdma', action='store_ture', help='whether mount rdma libs')
'--rdma', action='store_true', help='whether mount rdma libs')
parser.add_argument(
'--disttype',
default="pserver",

@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def get_model(args):
if args.use_reader_op:
raise Exception("machine_translation do not support reader op for now.")
embedding_dim = 512
encoder_size = 512
decoder_size = 512
@ -221,7 +223,7 @@ def get_model(args):
train_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(

@ -20,6 +20,7 @@ import numpy as np
import argparse
import time
import cProfile
import os
import paddle
import paddle.fluid as fluid
@ -65,19 +66,49 @@ def cnn_model(data):
def get_model(args):
# Input data
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = cnn_model(pd.read_input(images))
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
pd.write_output(avg_cost)
pd.write_output(batch_acc)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
else:
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
# inference program
inference_program = fluid.default_main_program().clone()
@ -88,7 +119,7 @@ def get_model(args):
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size)
paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc

@ -19,6 +19,7 @@ from __future__ import print_function
import functools
import numpy as np
import time
import os
import cProfile, pstats, StringIO
@ -26,6 +27,7 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
from recordio_converter import imagenet_train, imagenet_test
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
@ -122,40 +124,85 @@ def get_model(args):
else:
dshape = [32, 32, 3]
model = resnet_cifar10
else:
train_reader = paddle.dataset.cifar.train10()
test_reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
train_reader = paddle.dataset.flowers.train()
test_reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
train_reader = imagenet_train(args.data_path)
test_reader = imagenet_test(args.data_path)
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + dshape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
input, label = fluid.layers.read_file(data_file)
else:
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
predict = model(input, class_dim)
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = model(pd.read_input(input), class_dim)
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
pd.write_output(avg_cost)
pd.write_output(batch_acc)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
else:
predict = model(input, class_dim)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
target_vars=[batch_acc])
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
train_reader = paddle.batch(
batched_train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc
train_reader, buf_size=5120),
batch_size=args.batch_size * args.gpus,
drop_last=True)
batched_test_reader = paddle.batch(
train_reader, batch_size=args.batch_size, drop_last=True)
return avg_cost, inference_program, optimizer, batched_train_reader,\
batched_test_reader, batch_acc

@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def get_model(args):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512
emb_dim = 512
crop_size = 1500
@ -115,7 +118,7 @@ def get_model(args):
train_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),

@ -22,6 +22,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core
import argparse
import functools
import os
def vgg16_bn_drop(input):
@ -65,8 +66,24 @@ def get_model(args):
else:
data_shape = [224, 224, 3]
# Input data
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + data_shape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(
name='data', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
@ -95,7 +112,7 @@ def get_model(args):
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),

@ -0,0 +1,164 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.dataset import mnist, cifar, flowers, image
def convert_2_recordio(py_reader, outfilepath, batch_size, shape_data,
shape_label):
num_batches = 0
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(py_reader(), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=shape_data),
fluid.layers.data(
name='label', shape=shape_label, dtype='int64'),
],
place=fluid.CPUPlace())
num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
outfilepath, reader, feeder)
return num_batches
def prepare_mnist(outpath, batch_size):
outfilepath = os.path.join(outpath, "mnist.recordio")
convert_2_recordio(mnist.train, outfilepath, batch_size, [784], [1])
def prepare_cifar10(outpath, batch_size):
outfilepath = os.path.join(outpath, "cifar.recordio")
convert_2_recordio(cifar.train10, outfilepath, batch_size, [3, 32, 32], [1])
def prepare_flowers(outpath, batch_size):
outfilepath = os.path.join(outpath, "flowers.recordio")
convert_2_recordio(flowers.train, outfilepath, batch_size, [3, 224, 224],
[1])
def default_mapper(sample):
img, label = sample
img = image.simple_transform(
img, 256, 224, True, mean=[103.94, 116.78, 123.68])
return img.flatten().astype('float32'), label
def imagenet_train(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "train.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
# shuffle all, this is slow
random.shuffle(imgfilelist)
def train_reader():
for idx, imgfile in enumerate(imgfilelist):
data = image.load_image(
os.path.join(data_dir, "train", imgfile.lower()))
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, train_reader)
def imagenet_test(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "val.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
def test_reader():
for idx, imgfile in enumerate(imgfilelist):
base_path = os.path.join(data_dir, "val", imgfile.split(".")[0])
image_path = ".".join([base_path, "jpeg"])
data = image.load_image(image_path)
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, test_reader)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def convert_reader_to_recordio_files(
filename,
batch_per_file,
reader_creator,
feeder,
compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000,
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename)
assert (f_ext == ".recordio")
lines = []
f_idx = 0
counter = 0
for idx, batch in enumerate(reader_creator()):
lines.append(batch)
if idx >= batch_per_file and idx % batch_per_file == 0:
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
with fluid.recordio_writer.create_recordio_writer(
filename, compressor, max_num_records) as writer:
for l in lines:
res = feeder.feed(l)
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
counter += 1
lines = []
f_idx += 1
print("written file: ", filename)
return counter
def prepare_imagenet(inpath, outpath, batch_size):
r = paddle.batch(imagenet_train(inpath), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name="image", shape=[3, 224, 224]), fluid.layers.data(
name="label", shape=[1], dtype='int64')
],
place=fluid.CPUPlace())
outpath = os.path.join(outpath, "imagenet.recordio")
convert_reader_to_recordio_files(outpath, 10000, r, feeder)

@ -2,6 +2,7 @@
# This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU.
mkdir -p logs
#export FLAGS_fraction_of_gpu_memory_to_use=0.0
export CUDNN_PATH=/paddle/cudnn_v5
@ -35,71 +36,74 @@ nohup stdbuf -oL nvidia-smi \
--format=csv \
--filename=mem.log \
-l 1 &
# mnist
# mnist gpu mnist 128
FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=mnist \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=500 \
2>&1 | tee -a mnist_gpu_128.log
2>&1 | tee -a logs/mnist_gpu_128.log
# vgg16
# gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=vgg16 \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a vgg16_gpu_128.log
2>&1 | tee -a logs/vgg16_gpu_128.log
# flowers gpu 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=vgg16 \
--device=GPU \
--batch_size=32 \
--data_set=flowers \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a vgg16_gpu_flowers_32.log
2>&1 | tee -a logs/vgg16_gpu_flowers_32.log
# resnet50
# resnet50 gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet \
--device=GPU \
--batch_size=128 \
--data_set=cifar10 \
--model=resnet_cifar10 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a resnet50_gpu_128.log
2>&1 | tee -a logs/resnet50_gpu_128.log
# resnet50 gpu flowers 64
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet \
--device=GPU \
--batch_size=64 \
--data_set=flowers \
--model=resnet_imagenet \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a resnet50_gpu_flowers_64.log
2>&1 | tee -a logs/resnet50_gpu_flowers_64.log
# lstm
# lstm gpu imdb 32 # tensorflow only support batch=32
FLAGS_benchmark=true stdbuf -oL python fluid/stacked_dynamic_lstm.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=stacked_dynamic_lstm \
--device=GPU \
--batch_size=32 \
--skip_batch_num=5 \
--iterations=30 \
--hidden_dim=512 \
--emb_dim=512 \
--crop_size=1500 \
2>&1 | tee -a lstm_gpu_32.log
2>&1 | tee -a logs/lstm_gpu_32.log
# seq2seq
# seq2seq gpu wmb 128
FLAGS_benchmark=true stdbuf -oL python fluid/machine_translation.py \
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=machine_translation \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a lstm_gpu_128.log
2>&1 | tee -a logs/lstm_gpu_128.log

@ -0,0 +1,9 @@
#!/bin/bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device CPU --update_method pserver --iterations=10000 &
sleep 15
CUDA_VISIBLE_DEVICES=0,1 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &
CUDA_VISIBLE_DEVICES=2,3 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=1 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &

@ -92,6 +92,9 @@ if(WITH_GPU)
if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
message(FATAL_ERROR "TensorRT needs CUDNN >= 7.0 to compile")
endif()
if(${TENSORRT_MAJOR_VERSION} VERSION_LESS 4)
message(FATAL_ERROR "Paddle needs TensorRT >= 4.0 to compile")
endif()
include_directories(${TENSORRT_INCLUDE_DIR})
endif()
elseif(WITH_AMD_GPU)
@ -115,6 +118,10 @@ endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${SIMD_FLAG}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SIMD_FLAG}")
if(WITH_DISTRIBUTE)
add_definitions(-DPADDLE_WITH_DISTRIBUTE)
endif()
if(WITH_GOLANG)
# we need to symlink Paddle directory into GOPATH. If we
# don't do it and we have code that depends on Paddle, go
@ -163,3 +170,7 @@ if(WITH_GOLANG)
endif()
endif(WITH_GOLANG)
if(WITH_GRPC)
add_definitions(-DPADDLE_WITH_GRPC)
endif(WITH_GRPC)

@ -0,0 +1,42 @@
if (NOT WITH_ANAKIN)
return()
endif()
set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
"Anakin install path." FORCE)
set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library")
set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp)
set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz")
# A helper function used in Anakin, currently, to use it, one need to recursively include
# nearly all the header files.
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
# download library
message(STATUS "Download Anakin library from ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "rm -rf ${ANAKIN_INSTALL_DIR}/*")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; wget -q ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; tar xzf anakin_release_simple.tar.gz")
if (WITH_ANAKIN)
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
endif()

@ -0,0 +1,58 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(BRPC_SOURCES_DIR ${THIRD_PARTY_PATH}/brpc)
SET(BRPC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/brpc)
SET(BRPC_INCLUDE_DIR "${BRPC_INSTALL_DIR}/include" CACHE PATH "brpc include directory." FORCE)
SET(BRPC_LIBRARIES "${BRPC_INSTALL_DIR}/lib/libbrpc.a" CACHE FILEPATH "brpc library." FORCE)
INCLUDE_DIRECTORIES(${BRPC_INCLUDE_DIR})
# Reference https://stackoverflow.com/questions/45414507/pass-a-list-of-prefix-paths-to-externalproject-add-in-cmake-args
set(prefix_path "${THIRD_PARTY_PATH}/install/gflags|${THIRD_PARTY_PATH}/install/leveldb|${THIRD_PARTY_PATH}/install/snappy|${THIRD_PARTY_PATH}/install/gtest|${THIRD_PARTY_PATH}/install/protobuf")
# If minimal .a is need, you can set WITH_DEBUG_SYMBOLS=OFF
ExternalProject_Add(
extern_brpc
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/brpc/brpc"
GIT_TAG "6d153dd7ff00f960ae6895c9c5fff0ce9f07aff2"
PREFIX ${BRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${BRPC_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${BRPC_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_PREFIX_PATH=${prefix_path}
-DBRPC_WITH_GLOG=ON
${EXTERNAL_OPTIONAL_ARGS}
LIST_SEPARATOR |
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${BRPC_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${BRPC_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
)
ADD_DEPENDENCIES(extern_brpc protobuf leveldb gflags glog gtest snappy)
ADD_LIBRARY(brpc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET brpc PROPERTY IMPORTED_LOCATION ${BRPC_LIBRARIES})
ADD_DEPENDENCIES(brpc extern_brpc)
LIST(APPEND external_project_dependencies brpc)

@ -33,10 +33,19 @@ ELSE()
SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j ${NUM_OF_PROCESSOR} static grpc_cpp_plugin)
ENDIF()
# FIXME(wuyi): do not build zlib cares protobuf twice, find a way to build grpc with them
ExternalProject_Add(
extern_grpc
DEPENDS protobuf zlib
URL "http://paddlepaddledeps.bj.bcebos.com/grpc.tar.xz"
# NOTE(wuyi):
# this package is generated by following steps:
# 1. git clone -b v1.8.x https://github.com/grpc/grpc.git
# 2. submodule update --init
# 3. keep only zlib, cares, protobuf, boringssl under "third_party",
# checkout and clean other dirs under third_party
# 4. remove .git, and package the directory.
URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.8.x.tar.gz"
URL_MD5 "c9c58ee7d0e8929a63155af6a2ecdbd0"
PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
@ -49,7 +58,6 @@ ExternalProject_Add(
INSTALL_COMMAND make prefix=${GRPC_INSTALL_DIR} install
)
# FIXME(typhoonzero): hack to get static lib path, try a better way like merge them.
ADD_LIBRARY(grpc++_unsecure STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET grpc++_unsecure PROPERTY IMPORTED_LOCATION
"${GRPC_INSTALL_DIR}/lib/libgrpc++_unsecure.a")

@ -0,0 +1,44 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(LEVELDB_SOURCES_DIR ${THIRD_PARTY_PATH}/leveldb)
SET(LEVELDB_INSTALL_DIR ${THIRD_PARTY_PATH}/install/leveldb)
SET(LEVELDB_INCLUDE_DIR "${LEVELDB_INSTALL_DIR}/include" CACHE PATH "leveldb include directory." FORCE)
SET(LEVELDB_LIBRARIES "${LEVELDB_INSTALL_DIR}/lib/libleveldb.a" CACHE FILEPATH "leveldb library." FORCE)
INCLUDE_DIRECTORIES(${LEVELDB_INCLUDE_DIR})
ExternalProject_Add(
extern_leveldb
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${LEVELDB_SOURCES_DIR}
URL "https://github.com/google/leveldb/archive/v1.18.tar.gz"
URL_MD5 "73770de34a2a5ab34498d2e05b2b7fa0"
CONFIGURE_COMMAND ""
BUILD_COMMAND CXXFLAGS=-fPIC make -j ${NUM_OF_PROCESSOR} libleveldb.a
INSTALL_COMMAND mkdir -p ${LEVELDB_INSTALL_DIR}/lib/
&& cp ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/libleveldb.a ${LEVELDB_LIBRARIES}
&& cp -r ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/include ${LEVELDB_INSTALL_DIR}/
BUILD_IN_SOURCE 1
)
ADD_DEPENDENCIES(extern_leveldb snappy)
ADD_LIBRARY(leveldb STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET leveldb PROPERTY IMPORTED_LOCATION ${LEVELDB_LIBRARIES})
ADD_DEPENDENCIES(leveldb extern_leveldb)
LIST(APPEND external_project_dependencies leveldb)

@ -29,6 +29,8 @@ IF(NOT ${CBLAS_FOUND})
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
CACHE FILEPATH "openblas library." FORCE)
ADD_DEFINITIONS(-DPADDLE_USE_OPENBLAS)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable")
SET(OPENBLAS_COMMIT "v0.2.20")

@ -610,3 +610,21 @@ function(grpc_library TARGET_NAME)
COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
cc_library("${TARGET_NAME}" SRCS "${grpc_library_SRCS}" DEPS "${TARGET_NAME}_grpc" "${TARGET_NAME}_proto" "${grpc_library_DEPS}")
endfunction()
function(brpc_library TARGET_NAME)
set(oneValueArgs PROTO)
set(multiValueArgs SRCS DEPS)
set(options "")
cmake_parse_arguments(brpc_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
message(STATUS "generating brpc ${brpc_library_PROTO}")
get_filename_component(ABS_PROTO ${brpc_library_PROTO} ABSOLUTE)
get_filename_component(PROTO_WE ${brpc_library_PROTO} NAME_WE)
get_filename_component(PROTO_PATH ${ABS_PROTO} PATH)
protobuf_generate_cpp(brpc_proto_srcs brpc_proto_hdrs "${ABS_PROTO}")
cc_library("${TARGET_NAME}_proto" SRCS "${brpc_proto_srcs}")
cc_library("${TARGET_NAME}" SRCS "${brpc_library_SRCS}" DEPS "${TARGET_NAME}_proto" "${brpc_library_DEPS}")
endfunction()

@ -155,6 +155,15 @@ copy(inference_lib DEPS paddle_fluid_shared paddle_fluid
DSTS ${dst_dir}/${module} ${dst_dir}/${module}
)
if(WITH_CONTRIB)
set(contrib_dst_dir "${FLUID_INSTALL_DIR}/contrib/inference")
copy(contrib_inference_lib DEPS paddle_inference_api
SRCS ${PADDLE_SOURCE_DIR}/paddle/contrib/inference/paddle_inference_api.h
${PADDLE_BINARY_DIR}/paddle/contrib/inference/libpaddle_inference_api.*
DSTS ${contrib_dst_dir} ${contrib_dst_dir}
)
endif()
set(module "platform")
copy(platform_lib DEPS profiler_py_proto
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/dynload/*.h ${src_dir}/${module}/details/*.h

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save