Merge pull request #3768 from pkuyym/fix-3736
Add squared_l2_distance_opAdaptive_data_structure_for_SwitchOrderLayer
commit
a072ab9e74
@ -0,0 +1,118 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/squared_l2_distance_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class SquaredL2DistanceOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext& ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
||||||
|
"Input of SquaredL2DistanceOp "
|
||||||
|
"must be initialized.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
|
||||||
|
"Target of SquaredL2DistanceOp "
|
||||||
|
"must be initialized.");
|
||||||
|
|
||||||
|
auto* x = ctx.Input<Tensor>("X");
|
||||||
|
auto x_dims = x->dims();
|
||||||
|
auto* y = ctx.Input<Tensor>("Y");
|
||||||
|
auto y_dims = y->dims();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
|
||||||
|
"Tensor rank of both SquaredL2DistanceOp's "
|
||||||
|
"inputs must be same.");
|
||||||
|
|
||||||
|
int rank = framework::arity(x_dims);
|
||||||
|
PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2.");
|
||||||
|
PADDLE_ENFORCE_EQ(framework::product(x_dims) / x_dims[0],
|
||||||
|
framework::product(y_dims) / y_dims[0],
|
||||||
|
"Product of dimensions expcet the first dimension of "
|
||||||
|
"input and target must be equal.");
|
||||||
|
PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0],
|
||||||
|
"First dimension of target must be equal to input "
|
||||||
|
"or to 1.");
|
||||||
|
|
||||||
|
ctx.Output<Tensor>("sub_result")
|
||||||
|
->Resize({static_cast<int>(x_dims[0]),
|
||||||
|
static_cast<int>(framework::product(x_dims) / x_dims[0])});
|
||||||
|
ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SquaredL2DistanceOpMaker(framework::OpProto* proto,
|
||||||
|
framework::OpAttrChecker* op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "Input of SquaredL2DistanceOp.");
|
||||||
|
AddInput("Y", "Target of SquaredL2DistanceOp.");
|
||||||
|
AddOutput("sub_result",
|
||||||
|
"Buffering substraction result which "
|
||||||
|
"will be reused in backward.")
|
||||||
|
.AsIntermediate();
|
||||||
|
AddOutput("Out", "Squared l2 distance between input and target.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
SquaredL2DistanceOp will cacluate the squared L2 distance for
|
||||||
|
input and target. Number of distance value equals to the
|
||||||
|
first dimension of input. First dimension of target could be equal to
|
||||||
|
input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp
|
||||||
|
will broadcast target's first dimension to input's first dimension.
|
||||||
|
You can decide whether calculate the gradient of input and target.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext& ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Gradient of Out should not be null");
|
||||||
|
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||||
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
||||||
|
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
|
||||||
|
"First dimension of output gradient and "
|
||||||
|
"input value must be equal.");
|
||||||
|
PADDLE_ENFORCE_EQ(out_dims[1], 1,
|
||||||
|
"Second dimension of output gradient "
|
||||||
|
"must be 1.");
|
||||||
|
auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
||||||
|
if (x_grad) x_grad->Resize(x_dims);
|
||||||
|
if (y_grad) y_grad->Resize(y_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp,
|
||||||
|
ops::SquaredL2DistanceOpMaker, squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
squared_l2_distance,
|
||||||
|
ops::SquaredL2DistanceKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,25 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
|
||||||
|
#include "paddle/operators/squared_l2_distance_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
squared_l2_distance,
|
||||||
|
ops::SquaredL2DistanceKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,123 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SquaredL2DistanceKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* in0 = context.Input<Tensor>("X");
|
||||||
|
auto* in1 = context.Input<Tensor>("Y");
|
||||||
|
auto* out0 = context.Output<Tensor>("sub_result");
|
||||||
|
auto* out1 = context.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
auto in0_dims = in0->dims();
|
||||||
|
auto in1_dims = in1->dims();
|
||||||
|
|
||||||
|
int cols = framework::product(in0_dims) / in0_dims[0];
|
||||||
|
// reduce dimensions except the first
|
||||||
|
auto x =
|
||||||
|
EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
|
||||||
|
auto y =
|
||||||
|
EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));
|
||||||
|
|
||||||
|
out0->mutable_data<T>(context.GetPlace());
|
||||||
|
out1->mutable_data<T>(context.GetPlace());
|
||||||
|
auto sub_result = EigenMatrix<T>::From(*out0);
|
||||||
|
auto z = EigenVector<T>::Flatten(*out1);
|
||||||
|
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
auto x_dims = x.dimensions();
|
||||||
|
auto y_dims = y.dimensions();
|
||||||
|
// buffer the substraction result
|
||||||
|
if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
|
||||||
|
sub_result.device(place) =
|
||||||
|
x -
|
||||||
|
y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
|
||||||
|
} else {
|
||||||
|
sub_result.device(place) = x - y;
|
||||||
|
}
|
||||||
|
auto sub_res_pow2 = sub_result * sub_result;
|
||||||
|
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SquaredL2DistanceGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* in0 = context.Input<Tensor>("sub_result");
|
||||||
|
auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
|
||||||
|
|
||||||
|
auto sub_result = EigenMatrix<T>::From(*in0);
|
||||||
|
auto out_grad = EigenMatrix<T>::From(*in1);
|
||||||
|
|
||||||
|
auto x_dims = x_g->dims();
|
||||||
|
auto y_dims = y_g->dims();
|
||||||
|
|
||||||
|
int cols = framework::product(x_dims) / x_dims[0];
|
||||||
|
// calculate gradient
|
||||||
|
auto grad_mat = 2 *
|
||||||
|
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
|
||||||
|
sub_result;
|
||||||
|
|
||||||
|
// propagate back to input
|
||||||
|
auto eigen_place = context.GetEigenDevice<Place>();
|
||||||
|
if (x_g) {
|
||||||
|
x_g->mutable_data<T>(context.GetPlace());
|
||||||
|
// eigen matrix
|
||||||
|
auto x_grad =
|
||||||
|
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
|
||||||
|
// dimensions are same with subResult
|
||||||
|
x_grad.device(eigen_place) = grad_mat;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (y_g) {
|
||||||
|
y_g->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
|
||||||
|
"First dimension of gradient must be greater or "
|
||||||
|
"equal than first dimension of target.");
|
||||||
|
|
||||||
|
if (sub_result.dimensions()[0] == y_dims[0]) {
|
||||||
|
auto y_grad =
|
||||||
|
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
|
||||||
|
y_grad.device(eigen_place) = -1 * grad_mat;
|
||||||
|
} else {
|
||||||
|
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
|
||||||
|
auto y_grad = EigenVector<T>::Flatten(*y_g);
|
||||||
|
y_grad.device(eigen_place) = col_sum_res;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,89 @@
|
|||||||
|
import unittest
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
from gradient_checker import GradientChecker, create_op
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class TestSquaredL2DistanceOp_f0(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = 'squared_l2_distance'
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, 1., (32, 64)).astype('float32')
|
||||||
|
}
|
||||||
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
||||||
|
output = sub_res * sub_res
|
||||||
|
self.outputs = {
|
||||||
|
'sub_result': sub_res,
|
||||||
|
'Out': np.expand_dims(output.sum(1), 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestSquaredL2DistanceOp_f1(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = 'squared_l2_distance'
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, 1., (1, 64)).astype('float32')
|
||||||
|
}
|
||||||
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
||||||
|
output = sub_res * sub_res
|
||||||
|
self.outputs = {
|
||||||
|
'sub_result': sub_res,
|
||||||
|
'Out': np.expand_dims(output.sum(1), 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestSquaredL2DistanceOp_f2(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = 'squared_l2_distance'
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.uniform(0.1, 1., (32, 64, 128)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, 1., (1, 64, 128)).astype('float32')
|
||||||
|
}
|
||||||
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
||||||
|
sub_res = sub_res.reshape((32, 64 * 128))
|
||||||
|
output = sub_res * sub_res
|
||||||
|
self.outputs = {
|
||||||
|
'sub_result': sub_res,
|
||||||
|
'Out': np.expand_dims(output.sum(1), 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestSquaredL2DistanceGradOp(GradientChecker):
|
||||||
|
def test_squared_l2_distance_b0(self):
|
||||||
|
op = create_op("squared_l2_distance")
|
||||||
|
inputs = {
|
||||||
|
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, .6, (2, 3)).astype('float32')
|
||||||
|
}
|
||||||
|
self.compare_grad(op, inputs)
|
||||||
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
||||||
|
|
||||||
|
def test_squared_l2_distance_b1(self):
|
||||||
|
op = create_op("squared_l2_distance")
|
||||||
|
inputs = {
|
||||||
|
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, .6, (1, 3)).astype('float32')
|
||||||
|
}
|
||||||
|
self.compare_grad(op, inputs)
|
||||||
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
||||||
|
|
||||||
|
def test_squared_l2_distance_b2(self):
|
||||||
|
op = create_op("squared_l2_distance")
|
||||||
|
inputs = {
|
||||||
|
'X': np.random.uniform(0.1, .6, (2, 3, 4)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, .6, (1, 3, 4)).astype('float32')
|
||||||
|
}
|
||||||
|
self.compare_grad(op, inputs)
|
||||||
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue