|
|
@ -17,13 +17,13 @@ __all__ = [
|
|
|
|
|
|
|
|
|
|
|
|
def fc(input,
|
|
|
|
def fc(input,
|
|
|
|
size,
|
|
|
|
size,
|
|
|
|
|
|
|
|
num_flatten_dims=1,
|
|
|
|
param_attr=None,
|
|
|
|
param_attr=None,
|
|
|
|
param_initializer=None,
|
|
|
|
param_initializer=None,
|
|
|
|
bias_attr=None,
|
|
|
|
bias_attr=None,
|
|
|
|
bias_initializer=None,
|
|
|
|
bias_initializer=None,
|
|
|
|
name=None,
|
|
|
|
|
|
|
|
act=None,
|
|
|
|
act=None,
|
|
|
|
num_flatten_dims=1,
|
|
|
|
name=None,
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None):
|
|
|
|
startup_program=None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -32,15 +32,15 @@ def fc(input,
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
input: The input tensor to the function
|
|
|
|
input: The input tensor to the function
|
|
|
|
size: The size of the layer
|
|
|
|
size: The size of the layer
|
|
|
|
|
|
|
|
num_flatten_dims: Number of columns in input
|
|
|
|
param_attr: The parameters/weights to the FC Layer
|
|
|
|
param_attr: The parameters/weights to the FC Layer
|
|
|
|
param_initializer: Initializer used for the weight/parameter.
|
|
|
|
param_initializer: Initializer used for the weight/parameter.
|
|
|
|
If None, XavierInitializer() is used
|
|
|
|
If None, XavierInitializer() is used
|
|
|
|
bias_attr: The bias parameter for the FC layer
|
|
|
|
bias_attr: The bias parameter for the FC layer
|
|
|
|
bias_initializer: Initializer used for the bias.
|
|
|
|
bias_initializer: Initializer used for the bias.
|
|
|
|
If None, then ConstantInitializer() is used
|
|
|
|
If None, then ConstantInitializer() is used
|
|
|
|
name: Name/alias of the function
|
|
|
|
|
|
|
|
act: Activation to be applied to the output of FC layer
|
|
|
|
act: Activation to be applied to the output of FC layer
|
|
|
|
num_flatten_dims: Number of columns in input
|
|
|
|
name: Name/alias of the function
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
|
|
|
|
|
|
|
@ -111,9 +111,9 @@ def fc(input,
|
|
|
|
|
|
|
|
|
|
|
|
def embedding(input,
|
|
|
|
def embedding(input,
|
|
|
|
size,
|
|
|
|
size,
|
|
|
|
data_type='float32',
|
|
|
|
|
|
|
|
is_sparse=False,
|
|
|
|
is_sparse=False,
|
|
|
|
param_attr=None,
|
|
|
|
param_attr=None,
|
|
|
|
|
|
|
|
data_type='float32',
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None):
|
|
|
|
startup_program=None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -122,9 +122,9 @@ def embedding(input,
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
input: The input to the function
|
|
|
|
input: The input to the function
|
|
|
|
size: The size of the layer
|
|
|
|
size: The size of the layer
|
|
|
|
data_type: The type of data : float32, float_16, int etc
|
|
|
|
|
|
|
|
is_sparse: A flag that decleares whether the input is sparse
|
|
|
|
is_sparse: A flag that decleares whether the input is sparse
|
|
|
|
param_attr: Parameters for this layer
|
|
|
|
param_attr: Parameters for this layer
|
|
|
|
|
|
|
|
data_type: The type of data : float32, float_16, int etc
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
|
|
|
|
|
|
|
@ -152,7 +152,6 @@ def embedding(input,
|
|
|
|
# TODO(qijun): expose H0 and C0
|
|
|
|
# TODO(qijun): expose H0 and C0
|
|
|
|
def dynamic_lstm(input,
|
|
|
|
def dynamic_lstm(input,
|
|
|
|
size,
|
|
|
|
size,
|
|
|
|
data_type='float32',
|
|
|
|
|
|
|
|
param_attr=None,
|
|
|
|
param_attr=None,
|
|
|
|
bias_attr=None,
|
|
|
|
bias_attr=None,
|
|
|
|
use_peepholes=True,
|
|
|
|
use_peepholes=True,
|
|
|
@ -160,6 +159,7 @@ def dynamic_lstm(input,
|
|
|
|
gate_activation='sigmoid',
|
|
|
|
gate_activation='sigmoid',
|
|
|
|
cell_activation='tanh',
|
|
|
|
cell_activation='tanh',
|
|
|
|
candidate_activation='tanh',
|
|
|
|
candidate_activation='tanh',
|
|
|
|
|
|
|
|
data_type='float32',
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None):
|
|
|
|
startup_program=None):
|
|
|
|
helper = LayerHelper('lstm', **locals())
|
|
|
|
helper = LayerHelper('lstm', **locals())
|
|
|
@ -200,9 +200,9 @@ def dynamic_lstm(input,
|
|
|
|
|
|
|
|
|
|
|
|
def data(name,
|
|
|
|
def data(name,
|
|
|
|
shape,
|
|
|
|
shape,
|
|
|
|
|
|
|
|
append_batch_size=True,
|
|
|
|
data_type='float32',
|
|
|
|
data_type='float32',
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
append_batch_size=True,
|
|
|
|
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None,
|
|
|
|
startup_program=None,
|
|
|
|
stop_gradient=True):
|
|
|
|
stop_gradient=True):
|
|
|
@ -212,9 +212,9 @@ def data(name,
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
name: The name/alias of the function
|
|
|
|
name: The name/alias of the function
|
|
|
|
shape: Tuple declaring the shape.
|
|
|
|
shape: Tuple declaring the shape.
|
|
|
|
|
|
|
|
append_batch_size: Whether or not to append the data as a batch.
|
|
|
|
data_type: The type of data : float32, float_16, int etc
|
|
|
|
data_type: The type of data : float32, float_16, int etc
|
|
|
|
type: The output type. By default it is LOD_TENSOR.
|
|
|
|
type: The output type. By default it is LOD_TENSOR.
|
|
|
|
append_batch_size: Whether or not to append the data as a batch.
|
|
|
|
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
main_program: Name of the main program that calls this
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
startup_program: Name of the startup program
|
|
|
|
stop_gradient: A boolean that mentions whether gradient should flow.
|
|
|
|
stop_gradient: A boolean that mentions whether gradient should flow.
|
|
|
@ -600,12 +600,12 @@ def sequence_conv(input,
|
|
|
|
num_filters,
|
|
|
|
num_filters,
|
|
|
|
filter_size=3,
|
|
|
|
filter_size=3,
|
|
|
|
filter_stride=1,
|
|
|
|
filter_stride=1,
|
|
|
|
act=None,
|
|
|
|
|
|
|
|
padding=None,
|
|
|
|
padding=None,
|
|
|
|
bias_attr=None,
|
|
|
|
bias_attr=None,
|
|
|
|
bias_initializer=None,
|
|
|
|
bias_initializer=None,
|
|
|
|
param_attr=None,
|
|
|
|
param_attr=None,
|
|
|
|
param_initializer=None,
|
|
|
|
param_initializer=None,
|
|
|
|
|
|
|
|
act=None,
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None):
|
|
|
|
startup_program=None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -658,16 +658,16 @@ def sequence_conv(input,
|
|
|
|
|
|
|
|
|
|
|
|
def conv2d(input,
|
|
|
|
def conv2d(input,
|
|
|
|
num_filters,
|
|
|
|
num_filters,
|
|
|
|
name=None,
|
|
|
|
filter_size,
|
|
|
|
filter_size=[1, 1],
|
|
|
|
|
|
|
|
act=None,
|
|
|
|
|
|
|
|
groups=None,
|
|
|
|
|
|
|
|
stride=[1, 1],
|
|
|
|
stride=[1, 1],
|
|
|
|
padding=None,
|
|
|
|
padding=None,
|
|
|
|
bias_attr=None,
|
|
|
|
groups=None,
|
|
|
|
bias_initializer=None,
|
|
|
|
|
|
|
|
param_attr=None,
|
|
|
|
param_attr=None,
|
|
|
|
param_initializer=None,
|
|
|
|
param_initializer=None,
|
|
|
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
|
|
|
bias_initializer=None,
|
|
|
|
|
|
|
|
act=None,
|
|
|
|
|
|
|
|
name=None,
|
|
|
|
main_program=None,
|
|
|
|
main_program=None,
|
|
|
|
startup_program=None):
|
|
|
|
startup_program=None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|