parent
4137cb0baf
commit
b3f44ad761
@ -0,0 +1,107 @@
|
||||
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/multiplex_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class MultiplexOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
MultiplexOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto ins = ctx.MultiInput<Tensor>("X");
|
||||
auto *out = ctx.Output<Tensor>("Out");
|
||||
auto num_ins = ins.size();
|
||||
PADDLE_ENFORCE(num_ins > 2,
|
||||
"multiplex operator should have more than 2 inputs.");
|
||||
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1,
|
||||
"The first input must be a index vector.");
|
||||
auto in_dim = ins[1]->dims();
|
||||
|
||||
for (size_t i = 2; i < num_ins; i++) {
|
||||
auto dim = ins[i]->dims();
|
||||
PADDLE_ENFORCE(
|
||||
in_dim == dim,
|
||||
"All the input tensors except the first one must have the same size");
|
||||
}
|
||||
out->Resize(in_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
MultiplexOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input tensor of multiplex operator.").AsDuplicable();
|
||||
AddOutput("Out", "The output tensor of multiplex operator.");
|
||||
AddComment(R"DOC(Multiplex operator
|
||||
|
||||
Multiplex multiple tensors according to the index provided by the first
|
||||
input tensor.
|
||||
|
||||
ins[0]: the index of the tensor to output of size batchSize.
|
||||
ins[1:N]: the candidate output tensor.
|
||||
For each index i from 0 to batchSize - 1, the output is the i-th row of the
|
||||
the (index[i] + 1)-th tensor.
|
||||
|
||||
For each i-th row of output:
|
||||
|
||||
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)
|
||||
|
||||
where y is the output tensor. `x_{k}` is the k-th input layer
|
||||
and `k = x{0}[i] + 1`.
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class MultiplexGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
MultiplexGradOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) shouldn't be null.");
|
||||
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||
auto ins = ctx.MultiInput<Tensor>("X");
|
||||
for (size_t i = 0; i < ins.size(); i++) {
|
||||
auto dims = ins[i]->dims();
|
||||
d_ins[i]->Resize(dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
|
||||
ops::MultiplexGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(multiplex, ops::MultiplexCPUKernel<float>);
|
||||
REGISTER_OP_CPU_KERNEL(multiplex_grad, ops::MultiplexGradCPUKernel<float>);
|
@ -0,0 +1,76 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename T>
|
||||
class MultiplexGPUKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto ins = ctx.MultiInput<Tensor>("X");
|
||||
auto* out = ctx.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto rows = ins[1]->dims()[0];
|
||||
auto cols = ins[1]->dims()[1];
|
||||
// copy index to cpu
|
||||
Tensor index_t_cpu;
|
||||
index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
|
||||
auto index = index_t_cpu.data<T>();
|
||||
for (auto i = 0; i < rows; i++) {
|
||||
int k = (int)index[i] + 1;
|
||||
cudaMemcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
|
||||
cols * sizeof(T), cudaMemcpyDeviceToDevice);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class MultiplexGradGPUKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto ins = ctx.MultiInput<Tensor>("X");
|
||||
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||
for (auto d_in : d_ins) {
|
||||
d_in->mutable_data<T>(ctx.GetPlace());
|
||||
auto dims = d_in->dims();
|
||||
cudaMemset(d_in->data<T>(), 0, framework::product(dims) * sizeof(T));
|
||||
}
|
||||
|
||||
auto rows = ins[1]->dims()[0];
|
||||
auto cols = ins[1]->dims()[1];
|
||||
// copy index to cpu
|
||||
Tensor index_t_cpu;
|
||||
index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
|
||||
auto index = index_t_cpu.data<T>();
|
||||
for (auto i = 0; i < rows; i++) {
|
||||
int k = (int)index[i] + 1;
|
||||
cudaMemcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
|
||||
cols * sizeof(T), cudaMemcpyDeviceToDevice);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(multiplex, ops::MultiplexGPUKernel<float>);
|
||||
REGISTER_OP_GPU_KERNEL(multiplex_grad, ops::MultiplexGradGPUKernel<float>);
|
@ -0,0 +1,68 @@
|
||||
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class MultiplexCPUKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto index = ins[0]->data<T>();
|
||||
auto rows = ins[1]->dims()[0];
|
||||
auto cols = ins[1]->dims()[1];
|
||||
for (auto i = 0; i < rows; i++) {
|
||||
int k = (int)index[i] + 1;
|
||||
memcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
|
||||
cols * sizeof(T));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class MultiplexGradCPUKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||
auto d_ins =
|
||||
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
|
||||
for (auto d_in : d_ins) {
|
||||
d_in->mutable_data<T>(ctx.GetPlace());
|
||||
auto dims = d_in->dims();
|
||||
memset(d_in->data<T>(), 0, framework::product(dims) * sizeof(T));
|
||||
}
|
||||
|
||||
auto index = ins[0]->data<T>();
|
||||
auto rows = ins[1]->dims()[0];
|
||||
auto cols = ins[1]->dims()[1];
|
||||
for (auto i = 0; i < rows; i++) {
|
||||
int k = (int)index[i] + 1;
|
||||
memcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
|
||||
cols * sizeof(T));
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestMultiplexOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "multiplex"
|
||||
rows = 3
|
||||
index = np.array([3, 1, 0])
|
||||
ins1 = np.random.random((rows, 10)).astype("float32")
|
||||
ins2 = np.random.random((rows, 10)).astype("float32")
|
||||
ins3 = np.random.random((rows, 10)).astype("float32")
|
||||
ins4 = np.random.random((rows, 10)).astype("float32")
|
||||
self.inputs = {
|
||||
'X': [('index', index), ('x1', ins1), ('x2', ins2), ('x3', ins3),
|
||||
('x4', ins4)]
|
||||
}
|
||||
# multiplex output
|
||||
output = np.zeros_like(ins1)
|
||||
for i in range(0, rows):
|
||||
k = index[i] + 1
|
||||
output[i] = self.inputs['X'][k][1][i]
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["x1"], "Out")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue