parent
4137cb0baf
commit
b3f44ad761
@ -0,0 +1,107 @@
|
|||||||
|
|
||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/multiplex_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
class MultiplexOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
MultiplexOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto ins = ctx.MultiInput<Tensor>("X");
|
||||||
|
auto *out = ctx.Output<Tensor>("Out");
|
||||||
|
auto num_ins = ins.size();
|
||||||
|
PADDLE_ENFORCE(num_ins > 2,
|
||||||
|
"multiplex operator should have more than 2 inputs.");
|
||||||
|
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1,
|
||||||
|
"The first input must be a index vector.");
|
||||||
|
auto in_dim = ins[1]->dims();
|
||||||
|
|
||||||
|
for (size_t i = 2; i < num_ins; i++) {
|
||||||
|
auto dim = ins[i]->dims();
|
||||||
|
PADDLE_ENFORCE(
|
||||||
|
in_dim == dim,
|
||||||
|
"All the input tensors except the first one must have the same size");
|
||||||
|
}
|
||||||
|
out->Resize(in_dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
MultiplexOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The input tensor of multiplex operator.").AsDuplicable();
|
||||||
|
AddOutput("Out", "The output tensor of multiplex operator.");
|
||||||
|
AddComment(R"DOC(Multiplex operator
|
||||||
|
|
||||||
|
Multiplex multiple tensors according to the index provided by the first
|
||||||
|
input tensor.
|
||||||
|
|
||||||
|
ins[0]: the index of the tensor to output of size batchSize.
|
||||||
|
ins[1:N]: the candidate output tensor.
|
||||||
|
For each index i from 0 to batchSize - 1, the output is the i-th row of the
|
||||||
|
the (index[i] + 1)-th tensor.
|
||||||
|
|
||||||
|
For each i-th row of output:
|
||||||
|
|
||||||
|
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)
|
||||||
|
|
||||||
|
where y is the output tensor. `x_{k}` is the k-th input layer
|
||||||
|
and `k = x{0}[i] + 1`.
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MultiplexGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
MultiplexGradOp(const std::string &type,
|
||||||
|
const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) shouldn't be null.");
|
||||||
|
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto ins = ctx.MultiInput<Tensor>("X");
|
||||||
|
for (size_t i = 0; i < ins.size(); i++) {
|
||||||
|
auto dims = ins[i]->dims();
|
||||||
|
d_ins[i]->Resize(dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
|
||||||
|
ops::MultiplexGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(multiplex, ops::MultiplexCPUKernel<float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(multiplex_grad, ops::MultiplexGradCPUKernel<float>);
|
@ -0,0 +1,76 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class MultiplexGPUKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto ins = ctx.MultiInput<Tensor>("X");
|
||||||
|
auto* out = ctx.Output<Tensor>("Out");
|
||||||
|
out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
auto rows = ins[1]->dims()[0];
|
||||||
|
auto cols = ins[1]->dims()[1];
|
||||||
|
// copy index to cpu
|
||||||
|
Tensor index_t_cpu;
|
||||||
|
index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
|
||||||
|
auto index = index_t_cpu.data<T>();
|
||||||
|
for (auto i = 0; i < rows; i++) {
|
||||||
|
int k = (int)index[i] + 1;
|
||||||
|
cudaMemcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
|
||||||
|
cols * sizeof(T), cudaMemcpyDeviceToDevice);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class MultiplexGradGPUKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto ins = ctx.MultiInput<Tensor>("X");
|
||||||
|
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||||
|
for (auto d_in : d_ins) {
|
||||||
|
d_in->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto dims = d_in->dims();
|
||||||
|
cudaMemset(d_in->data<T>(), 0, framework::product(dims) * sizeof(T));
|
||||||
|
}
|
||||||
|
|
||||||
|
auto rows = ins[1]->dims()[0];
|
||||||
|
auto cols = ins[1]->dims()[1];
|
||||||
|
// copy index to cpu
|
||||||
|
Tensor index_t_cpu;
|
||||||
|
index_t_cpu.CopyFrom<T>(*(ins[0]), paddle::platform::CPUPlace());
|
||||||
|
auto index = index_t_cpu.data<T>();
|
||||||
|
for (auto i = 0; i < rows; i++) {
|
||||||
|
int k = (int)index[i] + 1;
|
||||||
|
cudaMemcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
|
||||||
|
cols * sizeof(T), cudaMemcpyDeviceToDevice);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(multiplex, ops::MultiplexGPUKernel<float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(multiplex_grad, ops::MultiplexGradGPUKernel<float>);
|
@ -0,0 +1,68 @@
|
|||||||
|
|
||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class MultiplexCPUKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||||
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||||
|
out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
auto index = ins[0]->data<T>();
|
||||||
|
auto rows = ins[1]->dims()[0];
|
||||||
|
auto cols = ins[1]->dims()[1];
|
||||||
|
for (auto i = 0; i < rows; i++) {
|
||||||
|
int k = (int)index[i] + 1;
|
||||||
|
memcpy(out->data<T>() + i * cols, ins[k]->data<T>() + i * cols,
|
||||||
|
cols * sizeof(T));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class MultiplexGradCPUKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||||
|
auto d_ins =
|
||||||
|
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
|
||||||
|
for (auto d_in : d_ins) {
|
||||||
|
d_in->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto dims = d_in->dims();
|
||||||
|
memset(d_in->data<T>(), 0, framework::product(dims) * sizeof(T));
|
||||||
|
}
|
||||||
|
|
||||||
|
auto index = ins[0]->data<T>();
|
||||||
|
auto rows = ins[1]->dims()[0];
|
||||||
|
auto cols = ins[1]->dims()[1];
|
||||||
|
for (auto i = 0; i < rows; i++) {
|
||||||
|
int k = (int)index[i] + 1;
|
||||||
|
memcpy(d_ins[k]->data<T>() + i * cols, d_out->data<T>() + i * cols,
|
||||||
|
cols * sizeof(T));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,34 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestMultiplexOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "multiplex"
|
||||||
|
rows = 3
|
||||||
|
index = np.array([3, 1, 0])
|
||||||
|
ins1 = np.random.random((rows, 10)).astype("float32")
|
||||||
|
ins2 = np.random.random((rows, 10)).astype("float32")
|
||||||
|
ins3 = np.random.random((rows, 10)).astype("float32")
|
||||||
|
ins4 = np.random.random((rows, 10)).astype("float32")
|
||||||
|
self.inputs = {
|
||||||
|
'X': [('index', index), ('x1', ins1), ('x2', ins2), ('x3', ins3),
|
||||||
|
('x4', ins4)]
|
||||||
|
}
|
||||||
|
# multiplex output
|
||||||
|
output = np.zeros_like(ins1)
|
||||||
|
for i in range(0, rows):
|
||||||
|
k = index[i] + 1
|
||||||
|
output[i] = self.inputs['X'][k][1][i]
|
||||||
|
self.outputs = {'Out': output}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(["x1"], "Out")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue