fix unittest timeout (#29820)
parent
c1797c8827
commit
c4eb5d0378
@ -0,0 +1,143 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.layers as layers
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
import gradient_checker
|
||||||
|
from decorator_helper import prog_scope
|
||||||
|
paddle.enable_static()
|
||||||
|
|
||||||
|
|
||||||
|
class TestMulGradCheck(unittest.TestCase):
|
||||||
|
@prog_scope()
|
||||||
|
def func(self, place):
|
||||||
|
prog = fluid.Program()
|
||||||
|
with fluid.program_guard(prog):
|
||||||
|
x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
|
||||||
|
y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
|
||||||
|
z = layers.mul(x=x, y=y)
|
||||||
|
gradient_checker.grad_check([x, y], z, place=place)
|
||||||
|
|
||||||
|
def test_grad(self):
|
||||||
|
places = [fluid.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(fluid.CUDAPlace(0))
|
||||||
|
for p in places:
|
||||||
|
self.func(p)
|
||||||
|
|
||||||
|
|
||||||
|
class TestMulDoubleGradCheck(unittest.TestCase):
|
||||||
|
@prog_scope()
|
||||||
|
def func(self, place):
|
||||||
|
# the shape of input variable should be clearly specified, not inlcude -1.
|
||||||
|
x_shape = [7, 11]
|
||||||
|
y_shape = [11, 9]
|
||||||
|
eps = 0.005
|
||||||
|
dtype = np.float64
|
||||||
|
|
||||||
|
x = layers.data('x', x_shape, False, dtype)
|
||||||
|
x.persistable = True
|
||||||
|
y = layers.data('y', y_shape, False, dtype)
|
||||||
|
y.persistable = True
|
||||||
|
out = layers.mul(x, y)
|
||||||
|
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
|
||||||
|
y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
|
||||||
|
|
||||||
|
gradient_checker.double_grad_check(
|
||||||
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||||
|
|
||||||
|
def test_grad(self):
|
||||||
|
places = [fluid.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(fluid.CUDAPlace(0))
|
||||||
|
for p in places:
|
||||||
|
self.func(p)
|
||||||
|
|
||||||
|
|
||||||
|
class TestMatmulDoubleGradCheck(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.init_test()
|
||||||
|
|
||||||
|
def init_test(self):
|
||||||
|
self.x_shape = [2]
|
||||||
|
self.y_shape = [2]
|
||||||
|
self.transpose_x = False
|
||||||
|
self.transpose_y = False
|
||||||
|
|
||||||
|
@prog_scope()
|
||||||
|
def func(self, place):
|
||||||
|
eps = 0.005
|
||||||
|
dtype = np.float64
|
||||||
|
typename = "float64"
|
||||||
|
x = layers.create_parameter(
|
||||||
|
dtype=typename, shape=self.x_shape, name='x')
|
||||||
|
y = layers.create_parameter(
|
||||||
|
dtype=typename, shape=self.y_shape, name='y')
|
||||||
|
out = layers.matmul(
|
||||||
|
x, y, self.transpose_x, self.transpose_y, name='out')
|
||||||
|
|
||||||
|
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
|
||||||
|
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
|
||||||
|
gradient_checker.double_grad_check(
|
||||||
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||||
|
|
||||||
|
def test_grad(self):
|
||||||
|
places = [fluid.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(fluid.CUDAPlace(0))
|
||||||
|
for p in places:
|
||||||
|
self.func(p)
|
||||||
|
|
||||||
|
|
||||||
|
def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck):
|
||||||
|
def init_test(self):
|
||||||
|
self.x_shape = [2, 3]
|
||||||
|
self.y_shape = [3, 2]
|
||||||
|
self.transpose_x = True
|
||||||
|
self.transpose_y = True
|
||||||
|
|
||||||
|
|
||||||
|
def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck):
|
||||||
|
def init_test(self):
|
||||||
|
self.x_shape = [2, 4, 3]
|
||||||
|
self.y_shape = [2, 4, 5]
|
||||||
|
self.transpose_x = True
|
||||||
|
self.transpose_y = False
|
||||||
|
|
||||||
|
|
||||||
|
def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck):
|
||||||
|
def init_test(self):
|
||||||
|
self.x_shape = [2, 3, 4, 5]
|
||||||
|
self.y_shape = [2, 3, 3, 5]
|
||||||
|
self.transpose_x = False
|
||||||
|
self.transpose_y = True
|
||||||
|
|
||||||
|
|
||||||
|
def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck):
|
||||||
|
def init_test(self):
|
||||||
|
self.x_shape = [2, 3, 4]
|
||||||
|
self.y_shape = [4, 3]
|
||||||
|
self.transpose_x = False
|
||||||
|
self.transpose_y = False
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue