fix unittest timeout (#29820)
parent
c1797c8827
commit
c4eb5d0378
@ -0,0 +1,143 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
import gradient_checker
|
||||
from decorator_helper import prog_scope
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
class TestMulGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
prog = fluid.Program()
|
||||
with fluid.program_guard(prog):
|
||||
x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
|
||||
y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
|
||||
z = layers.mul(x=x, y=y)
|
||||
gradient_checker.grad_check([x, y], z, place=place)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestMulDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable should be clearly specified, not inlcude -1.
|
||||
x_shape = [7, 11]
|
||||
y_shape = [11, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', x_shape, False, dtype)
|
||||
x.persistable = True
|
||||
y = layers.data('y', y_shape, False, dtype)
|
||||
y.persistable = True
|
||||
out = layers.mul(x, y)
|
||||
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestMatmulDoubleGradCheck(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.init_test()
|
||||
|
||||
def init_test(self):
|
||||
self.x_shape = [2]
|
||||
self.y_shape = [2]
|
||||
self.transpose_x = False
|
||||
self.transpose_y = False
|
||||
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
typename = "float64"
|
||||
x = layers.create_parameter(
|
||||
dtype=typename, shape=self.x_shape, name='x')
|
||||
y = layers.create_parameter(
|
||||
dtype=typename, shape=self.y_shape, name='y')
|
||||
out = layers.matmul(
|
||||
x, y, self.transpose_x, self.transpose_y, name='out')
|
||||
|
||||
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck):
|
||||
def init_test(self):
|
||||
self.x_shape = [2, 3]
|
||||
self.y_shape = [3, 2]
|
||||
self.transpose_x = True
|
||||
self.transpose_y = True
|
||||
|
||||
|
||||
def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck):
|
||||
def init_test(self):
|
||||
self.x_shape = [2, 4, 3]
|
||||
self.y_shape = [2, 4, 5]
|
||||
self.transpose_x = True
|
||||
self.transpose_y = False
|
||||
|
||||
|
||||
def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck):
|
||||
def init_test(self):
|
||||
self.x_shape = [2, 3, 4, 5]
|
||||
self.y_shape = [2, 3, 3, 5]
|
||||
self.transpose_x = False
|
||||
self.transpose_y = True
|
||||
|
||||
|
||||
def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck):
|
||||
def init_test(self):
|
||||
self.x_shape = [2, 3, 4]
|
||||
self.y_shape = [4, 3]
|
||||
self.transpose_x = False
|
||||
self.transpose_y = False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue