commit
da2aabb628
@ -0,0 +1,139 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/crop_op.h"
|
||||||
|
#include <boost/lexical_cast.hpp>
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
using framework::LoDTensor;
|
||||||
|
|
||||||
|
class CropOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
||||||
|
"Input(X) of CropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
|
||||||
|
"Output(Out) of CropOp should not be null.");
|
||||||
|
auto x_dim = ctx.Input<LoDTensor>("X")->dims();
|
||||||
|
auto *y = ctx.Input<LoDTensor>("Y");
|
||||||
|
auto *out = ctx.Output<LoDTensor>("Out");
|
||||||
|
if (y == nullptr) {
|
||||||
|
auto shape = Attr<std::vector<int>>("shape");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
int64_t(shape.size()), x_dim.size(),
|
||||||
|
"Shape size should be equal to dimention size of input tensor.");
|
||||||
|
std::vector<int64_t> tensor_shape(shape.size());
|
||||||
|
for (size_t i = 0; i < shape.size(); ++i) {
|
||||||
|
tensor_shape[i] = static_cast<int64_t>(shape[i]);
|
||||||
|
}
|
||||||
|
out->Resize(framework::make_ddim(tensor_shape));
|
||||||
|
} else {
|
||||||
|
PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(y->dims()),
|
||||||
|
"Tensor rank of both CropOp's "
|
||||||
|
"inputs must be same.");
|
||||||
|
out->Resize(y->dims());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class CropOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X",
|
||||||
|
"The input of pad op. "
|
||||||
|
"The input should be a k-D tensor(k > 0 and k < 7)");
|
||||||
|
AddInput("Y",
|
||||||
|
"The input used as reference for cropping"
|
||||||
|
" with the same dimension as X. ");
|
||||||
|
AddOutput("Out",
|
||||||
|
"The output of crop op "
|
||||||
|
"with the same dimension as X.");
|
||||||
|
AddAttr<std::vector<int>>("offsets",
|
||||||
|
"A list<int> describing offsets to be cropped."
|
||||||
|
"The size of offsets list should be as same as "
|
||||||
|
"dimension size of input X.");
|
||||||
|
AddAttr<std::vector<int>>("shape",
|
||||||
|
"A list<int> describing the shape of output."
|
||||||
|
"The size of shape list should be as same as "
|
||||||
|
"dimension size of input X.")
|
||||||
|
.SetDefault(std::vector<int>());
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Crop Operator.
|
||||||
|
Crop input into output, as specified by offsets and shape.
|
||||||
|
|
||||||
|
There are two ways to set shape:
|
||||||
|
1. referenc input: crop input X as shape as reference input.
|
||||||
|
The dimension of reference input should
|
||||||
|
be as same as input X.
|
||||||
|
2. shape list: crop input X by shape described by a list<int>.
|
||||||
|
The size of shape list should be as same as
|
||||||
|
dimension size of input X.
|
||||||
|
|
||||||
|
The input should be a k-D tensor(k > 0 and k < 7). As an example:
|
||||||
|
|
||||||
|
Given:
|
||||||
|
|
||||||
|
X = [[0, 1, 2, 0, 0]
|
||||||
|
[0, 3, 4, 0, 0]
|
||||||
|
[0, 0, 0, 0, 0]]
|
||||||
|
|
||||||
|
and
|
||||||
|
|
||||||
|
offsets = [0, 1]
|
||||||
|
|
||||||
|
and
|
||||||
|
|
||||||
|
shape = [2, 2]
|
||||||
|
|
||||||
|
then we get
|
||||||
|
|
||||||
|
Out = [[1, 2],
|
||||||
|
[3, 4]]
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class CropOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) should not be null");
|
||||||
|
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
|
||||||
|
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
||||||
|
if (x_grad != nullptr) {
|
||||||
|
x_grad->Resize(x_dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel<float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(crop_grad,
|
||||||
|
ops::CropGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,21 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/crop_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(crop, ops::CropKernel<float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(crop_grad,
|
||||||
|
ops::CropGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,104 @@
|
|||||||
|
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
#include "paddle/operators/strided_memcpy.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators { // Internal
|
||||||
|
|
||||||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class CropKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* x = context.Input<Tensor>("X");
|
||||||
|
auto* out = context.Output<Tensor>("Out");
|
||||||
|
const T* x_data = x->data<T>();
|
||||||
|
T* out_data = out->mutable_data<T>(context.GetPlace());
|
||||||
|
auto x_stride = framework::stride(x->dims());
|
||||||
|
auto out_stride = framework::stride(out->dims());
|
||||||
|
auto offsets = context.Attr<std::vector<int>>("offsets");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
x->dims().size(), offsets.size(),
|
||||||
|
"Offsets size should be equal to dimension size of input tensor.");
|
||||||
|
int64_t offset = 0;
|
||||||
|
for (int i = 0; i < offsets.size(); ++i) {
|
||||||
|
offset += (x_stride[i] * offsets[i]);
|
||||||
|
}
|
||||||
|
StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
|
||||||
|
out->dims(), out_stride, out_data);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T, size_t D>
|
||||||
|
void CropGradFunction(const framework::ExecutionContext& context) {
|
||||||
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
if (d_x != nullptr) {
|
||||||
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
d_x->mutable_data<T>(context.GetPlace());
|
||||||
|
auto offsets = context.Attr<std::vector<int>>("offsets");
|
||||||
|
Eigen::array<std::pair<int, int>, D> paddings;
|
||||||
|
for (int i = 0; i < D; ++i) {
|
||||||
|
paddings[i].first = offsets[i];
|
||||||
|
paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
|
||||||
|
}
|
||||||
|
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
|
||||||
|
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
|
||||||
|
d_x_tensor.device(context.GetEigenDevice<Place>()) =
|
||||||
|
d_out_tensor.pad(paddings, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class CropGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
size_t rank =
|
||||||
|
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
|
||||||
|
switch (rank) {
|
||||||
|
case 1:
|
||||||
|
CropGradFunction<Place, T, 1>(context);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
CropGradFunction<Place, T, 2>(context);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
CropGradFunction<Place, T, 3>(context);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
CropGradFunction<Place, T, 4>(context);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
CropGradFunction<Place, T, 5>(context);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
CropGradFunction<Place, T, 6>(context);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
PADDLE_THROW(
|
||||||
|
"CropOp only support tensors with no more than 6 dimensions.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,91 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
def crop(data, offsets, crop_shape):
|
||||||
|
def indexOf(shape, index):
|
||||||
|
result = []
|
||||||
|
for dim in reversed(shape):
|
||||||
|
result.append(index % dim)
|
||||||
|
index = index / dim
|
||||||
|
return result[::-1]
|
||||||
|
|
||||||
|
result = []
|
||||||
|
for i, value in enumerate(data.flatten()):
|
||||||
|
index = indexOf(data.shape, i)
|
||||||
|
selected = True
|
||||||
|
if len(index) == len(offsets):
|
||||||
|
for j, offset in enumerate(offsets):
|
||||||
|
selected = selected and index[j] >= offset and index[
|
||||||
|
j] < crop_shape[j] + offset
|
||||||
|
if selected:
|
||||||
|
result.append(value)
|
||||||
|
return np.array(result).reshape(crop_shape)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCropOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "crop"
|
||||||
|
self.crop_by_input = False
|
||||||
|
self.attrs = {}
|
||||||
|
self.initTestCase()
|
||||||
|
self.attrs['offsets'] = self.offsets
|
||||||
|
if self.crop_by_input:
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.random(self.x_shape).astype("float32"),
|
||||||
|
'Y': np.random.random(self.crop_shape).astype("float32")
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
self.attrs['shape'] = self.crop_shape
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.random(self.x_shape).astype("float32"),
|
||||||
|
}
|
||||||
|
self.outputs = {
|
||||||
|
'Out': crop(self.inputs['X'], self.offsets, self.crop_shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
def initTestCase(self):
|
||||||
|
self.x_shape = (8, 8)
|
||||||
|
self.crop_shape = (2, 2)
|
||||||
|
self.offsets = [1, 2]
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad_normal(self):
|
||||||
|
self.check_grad(['X'], 'Out', max_relative_error=0.006)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase1(TestCropOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.x_shape = (16, 8, 32)
|
||||||
|
self.crop_shape = [2, 2, 3]
|
||||||
|
self.offsets = [1, 5, 3]
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase2(TestCropOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.x_shape = (4, 8)
|
||||||
|
self.crop_shape = [4, 8]
|
||||||
|
self.offsets = [0, 0]
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase3(TestCropOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.x_shape = (4, 8, 16)
|
||||||
|
self.crop_shape = [2, 2, 3]
|
||||||
|
self.offsets = [1, 5, 3]
|
||||||
|
self.crop_by_input = True
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase4(TestCropOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.x_shape = (4, 4)
|
||||||
|
self.crop_shape = [4, 4]
|
||||||
|
self.offsets = [0, 0]
|
||||||
|
self.crop_by_input = True
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue