Merge pull request #7311 from ranqiu92/plot
Add script to plot learning curvedetection_output_fixbug
commit
e8483dde8b
@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser('Parse Log')
|
||||
parser.add_argument(
|
||||
'--file_path', '-f', type=str, help='the path of the log file')
|
||||
parser.add_argument(
|
||||
'--sample_rate',
|
||||
'-s',
|
||||
type=float,
|
||||
default=1.0,
|
||||
help='the rate to take samples from log')
|
||||
parser.add_argument(
|
||||
'--log_period', '-p', type=int, default=1, help='the period of log')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def parse_file(file_name):
|
||||
loss = []
|
||||
error = []
|
||||
with open(file_name) as f:
|
||||
for i, line in enumerate(f):
|
||||
line = line.strip()
|
||||
if not line.startswith('pass'):
|
||||
continue
|
||||
line_split = line.split(' ')
|
||||
if len(line_split) != 5:
|
||||
continue
|
||||
|
||||
loss_str = line_split[2][:-1]
|
||||
cur_loss = float(loss_str.split('=')[-1])
|
||||
loss.append(cur_loss)
|
||||
|
||||
err_str = line_split[3][:-1]
|
||||
cur_err = float(err_str.split('=')[-1])
|
||||
error.append(cur_err)
|
||||
|
||||
accuracy = [1.0 - err for err in error]
|
||||
|
||||
return loss, accuracy
|
||||
|
||||
|
||||
def sample(metric, sample_rate):
|
||||
interval = int(1.0 / sample_rate)
|
||||
if interval > len(metric):
|
||||
return metric[:1]
|
||||
|
||||
num = len(metric) / interval
|
||||
idx = [interval * i for i in range(num)]
|
||||
metric_sample = [metric[id] for id in idx]
|
||||
return metric_sample
|
||||
|
||||
|
||||
def plot_metric(metric,
|
||||
batch_id,
|
||||
graph_title,
|
||||
line_style='b-',
|
||||
line_label='y',
|
||||
line_num=1):
|
||||
plt.figure()
|
||||
plt.title(graph_title)
|
||||
if line_num == 1:
|
||||
plt.plot(batch_id, metric, line_style, label=line_label)
|
||||
else:
|
||||
for i in range(line_num):
|
||||
plt.plot(batch_id, metric[i], line_style[i], label=line_label[i])
|
||||
plt.xlabel('batch')
|
||||
plt.ylabel(graph_title)
|
||||
plt.legend()
|
||||
plt.savefig(graph_title + '.jpg')
|
||||
plt.close()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]."
|
||||
|
||||
loss, accuracy = parse_file(args.file_path)
|
||||
batch = [args.log_period * i for i in range(len(loss))]
|
||||
|
||||
batch_sample = sample(batch, args.sample_rate)
|
||||
loss_sample = sample(loss, args.sample_rate)
|
||||
accuracy_sample = sample(accuracy, args.sample_rate)
|
||||
|
||||
plot_metric(loss_sample, batch_sample, 'loss', line_label='loss')
|
||||
plot_metric(
|
||||
accuracy_sample,
|
||||
batch_sample,
|
||||
'accuracy',
|
||||
line_style='g-',
|
||||
line_label='accuracy')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue